
. ./0/ - :+__ /

JT
/_'_/,_ (

SOFTWARE ENGINEERING LABORATORY SERIES]/_ i U_ SEL-92-002
i _jl

I

DATA COLLECTION PROCEDURES

I FOR THE SOFTWARE ENGINEERING I
i LABORATORY (SEL) DATABASE

i +o

MARCH 1992

:
i

bT ', '_ + {'f':+_.',)].L_ ,..+!++ I.

3;37:2,7_','-'_'+:.-"<'
Goddard Space Flight Center
Greenloelt, Maryland 20771

J

i

|
w

|

_m
J

II

|

|
|
t

N

i

|
f
L_

i

|

i

i
|
o.__

SOFTWARE ENGINEERING LABORATORY SERIES SEL-92-002

DATA COLLECTION PROCEDURES
FOR THE SOFTWARE ENGINEERING

LABORATORY (SEL) DATABASE

MARCH 1992

National Aeronautics and

Space Administration

Goddard Space Flight Center
Greenbelt, Maryland 20771

FOREWORD

The Software Engineering Laboratory (SEL) is an organization sponsored by the

National Aeronautics and Space Administration/Goddard Space Flight Center

(NASA/GSFC) and created to investigate the effectiveness of software engineering

technologies when applied to the development of applications software. The SEL was

created in 1976 and has three primary organizational members:

NASA/GSFC, Systems Development Branch

University of Maryland, Department of Computer Science

Computer Sciences Corporation, Systems Development Operation

The goals of the SEL are (1) to understand the software development process in the

GSFC environment; (2) to measure the effect of various methodologies, tools, and

models on this process; and (3) to identify and then to apply successful development

practices. The activities, findings, and recommendations of the SELare recorded in the

Software Engineering Laboratory Series, a continuing series of reports that includes
this document.

The major contributors to this document are

Gerard Heller (Computer Sciences Corporation)
Jon Valett (NASA/GSFC)

Mary Wild (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

Goddard Space Flight Center

Greenbelt, Maryland 20771

_,AGE i;'liL_i_,,, .l,,,t.L¥BLANK

6201

°°°

In

PRECEDING P_,(IE btoA_:_K NOT FtL!v_Et)

ABSTRACT

w

This document is a guidebook to collecting software engineering data on software de-

velopment and maintenance efforts, as practiced in the Software Engineering Labora-

tory (SEL). It supersedes the document entitled Data Collection Procedures for the

Rehosted SEL Database, number SEL-87-008 in the SEL series, which was published in

October 1987. It presents an overview of SEL data collection and the types of data the

SEL collects. It then presents procedures to be followed on software development and

maintenance projects in the Flight Dynamics Division (FDD) of Goddard Space Flight

Center (GSFC) for collecting data in support of SEL software engineering research ac-

tivities. These procedures include detailed instructions for the completion and submis-
sion of SEL data collection forms.

6201

V

. ._ • :t. r

Table of Contents

Section I--Introduction .. 1-1

Section 2---Overview of SEL Data Collection 2-1

2.1 Data Collected by the SEL 2-1

2.2 How the SEL Collects Data 2-2

2.3 Managing the Data Collection Process 2-9

Section 3--Data Collection in the Development Life Cycle 3-1

3.1 Project Startup ... 3-1

3.1.1 Project Startup Form (PSF) 3-2

3.1.2 Project Estimates Form (PEF) 3-6

3.2 Data Collection During Development 3-12

3.2.1 Rate Data 3-12

3.2.1.1 Personnel Resources Form (PRF) and
Cleanroom Personnel Resources

Form (CLPRF) 3-12

3.2.1.2 Development Status Form (DSF) 3-19

3.2.1.3 Services/Products Form (SPF) 3-25

3.2.2 Event Data 3-32

3.2.2.1 Subsystem Information Form (SIF) 3-32

3.2.2.2 Component Origination Form (COF) 3-36

3.2.2.3 Component Change Form (CCF) 3-42

3.2.2.4 Change Report Form (CRF) 3-44

3.2.2.5 Project Messages Form (PMF) 3-55

3.3 Project Completion 3-55

3.3.1 Project Completion Statistics Form (PCSF) 3-58

3.3.2 Subjective Evaluation Form (SEF) 3-65

Section 4---Data Collection in Maintenance 4-1

4.1 Transition to Maintenance 4-1

.... __._'_ vii

6201

PREC_-"DI!_!G _--""_: :--

Table of Contents (Continued)

4.2

4.2.1

4.2.2

Data Collection During Maintenance 4-2

Maintenance Rate Data 4-3

4.2.1.1 Weekly Maintenance Effort Form
(WMEF) 4-3

4.2.1.2 Growth Data 4-7

Maintenance Event Data 4-7

4.2.2.1 Maintenance Change Report Form
(MCRF) 4-8

4.2.2.2 Project Messages 4-15

Appendix---SEL Forms

Glossary

References

Standard Bibliography of SEL Literature

Vlll

List of Illustrations

_p

Figure

2-1

2-2

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-13

3-14

3-15

3-16

4-1

4-2

SEL Forms Collected by Phase 2-10

Communication Paths in Monitoring SEL Data Collection ... 2-11

Project Startup Form 3-3

Project Estimates Form 3-7

Personnel Resources Form 3-13

Personnel Resources Form (Cleanroom Version) 3-14

Development Status Form 3-20

Preprinted DSF for Update 3-21

Services/Products Form 3-26

Sample Page From Data Collection Status Report 3-29

Subsystem Information Form 3-33

Component Origination Form 3-37

Component Change Form 3-43

Change Report Form 3-45

Project Messages Form 3-56

Sample SAP Printout 3-58

Project Completion Statistics Form 3-61

Subjective Evaluation Form 3-66

Weekly Maintenance Effort Form 4-4

Maintenance Change Report Form 4-9

6201

ix

List of Tables

Table

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

3-1

High-Level Classification of SEL Data Types 2-2

Estimate Data ... 2-3

Product Data .. 2-4

Resources Data 2-5

Process Data .. 2-6

Change Error/Data 2-7

Annotation Data 2-7

SEL Data Collection Forms 2-8

SEL Phase Definitions 3-9

6201

X

SECTION 1--INTRODUCTION

The Software Engineering Laboratory (SEL) was established in 1976 to perform

research in the measurement and evaluation of the software development process.

Over the years, the SEL has collected and analyzed data from nearly 100 software

development projects in the Goddard Space Flight Center (GSFC) Flight Dynamics

Division (FDD). These data have been used to study both the processes and the prod-

ucts of such development efforts and to evaluate the impact of methodologies, tools,

and technologies. In recent years, the SEL has expanded the scope of its activities to

include the study of software maintenance and has begun collecting and analyzing data

on this phase of the software life cycle.

Fundamental to the research activities of the SEL is the collection of data on develop-

ment and maintenance projects in the FDD environment. A general introduction to

the collection of software engineering data is provided in the SEL Guide to Data Collec-

tion (Reference 1). That document discusses the motivation for collecting data, the

philosophy behind deciding what to collect, resources required, estimated costs, and

data management issues. This document is intended to augment that earlier workwith

an updated overview of the types of data collected by the SEL and detailed procedures

for collecting those data.

This document is intended to serve three audiences with overlapping needs. One audi-

ence encompasses those who want an overview of the types of data that the SEL collects

and how it goes about collecting them. Another audience consists of software man-

agers, developers, and maintainers working on projects being monitored by the SEL. In

addition to an overview of the data collection process, members of this audience need

specific information about their roles in that process. Thus, the document discusses

how and when to complete and submit the various data collection forms used by the

SEL; explains how final statistics are determined at project completion; and provides

detailed instructions for completing each form. It also gives guidelines as to what

communication must regularly take place between monitored projects and SEL data

collection personnel. Finally, the document serves as a companion to SEL researchers

who need to understand the origins of the data with which they work.

The remainder of the document is organized into three major sections:

• Section 2 provides an overview of the types of data collected from a SEL-

monitored development or maintenance project and introduces the mecha-

nisms by which they are collected.

• Section 3 details the data collection process for development projects from

startup through system delivery. It also discusses when the data are needed

(periodically or keyed to specific events) and whether they are submitted by

developers or automatically monitored by the SEL. Samples of the 13 SEL

forms associated with development and instructions for how and when to

complete them are included.

6201

1-1

Section 4 discusses the transition from development to maintenance and data

collection during maintenance. Again, when the data are needed and who

provides them are discussed. Samples of the two SEL forms associated with

maintenance and instructions for how and when to complete them are
included.

The Appendix contains samples of all SEL data collection forms discussed in
this document.

6201

1-2

SECTION 2----OVERVIEW OF SEL DATA COLLECTION

This section introduces software engineering data collection as practiced in the SEL.

Section 2.1 presents a conceptual overview of the data the SEL collects. This overview

is illustrated as a hierarchy of data types and subtypes. The data types in the hierarchy

are mapped to the hardcopy forms the SEL uses to collect them.

Section 2.2 presents high-level SEL data collection concepts. It introduces the forms

that are central to the SEEs data collection efforts. It categorizes the data collected on

the forms with respect to their origin, collection mechanism, and collection frequency.

It also summarizes the major data collection activities performed over the software

life cycle.

Section 2.3 discusses managing the data collection process, including concepts for
validation and feedback of the data.

Note that those discussions represent the practice of data collection as exercised at the

time this document was published. The underlying principles guiding the data

collection efforts will remain fairly constant. Detailed data collection models,

however, are subject to change as life cycles and methodologies evolve, as new

technologies replace existing ones, and as the focus of SEL software engineering

research activities shifts. Section 2.3 concludes, therefore, with a brief discussion of

adapting data collection procedures to meet changing needs.

2.1 DATA COLLECTED BY THE SEL

The basic entity about which the SEL collects data is the project. For each project the

SEL monitors, it collects data that characterize various aspects of the project's software

life cycle. These aspects include the problem the system is intended to solve, the process

followed in solving it, the end product produced, the environment in which that product

is developed, and the resources expended along the way. The SEL data collected on a

given project can be grouped into the six high-level data types described in Table 2-1.

Tables 2-2 through 2-7 elaborate on the high-level data types introduced in Table 2-1 by

breaking them down, via a hierarchy of subtypes, to the level of elemental data items or

groups. Note that all SEL data, regardless of their source or collection mechanism, axe

recorded on hardcopy forms for entry into a central database. The acronyms for these

forms appear in Tables 2-2 through 2-7 to provide a mapping from this section's

conceptual descriptions of the data to the data collection mechanisms described in the

following section. In these tables, when the acronym for a given form is listed next to a

given data type, it means that the form is used to collect that data type (and any lower

level data subtypes). Thus, for example, all the Size data elements in Table 2-3 are

collected on a PCSF. In the same table, however, System Elements are collected on

three different forms (PSE SIF, COF). This is shown on the lower-level table

containing the data subtypes that collectively make up System Elements.

8201

2-1

Table 2-1. High-Level Classification of SEL Data Types

Type

Estimate data

Product data

Resources data

Process data

Change/error data

Annotation data

Description

Data that capture the project leader's size, resource use,

and schedule estimates at project start and periodically
throughout development.

Data that characterize the final developed product in

terms of size measures and system composition.

Data that capture and characterize staff and computer
resources expended during development and
maintenance.

Data that characterize the development process: its
schedule and profiles of development activities over time.

Data that characterize changes made and errors

corrected during development and maintenance.

Data that capture subjective information about a project,
the techniques and methodologies used on it, and the
data collected on it.

,-:-,

2.2 HOW THE SEL COLLECTS DATA

This section provides an overview of SEL data collection concepts and serves as a

bridge from the conceptual view of the data the SEL collects (Section 2.1) to the details

of how the SEL collects them (Sections 3 and 4).

As has been noted, the use of hardcopy forms is a central concept in the SEL approach

to data collection. There are 15 types of SEL data collection forms, as listed in

Table 2-8. Each form is referenced by a 3- to 5-letter acronym. The next four columns

in this table describe the source of the data reported on each form, the mechanism by

which the data are obtained, the party responsible for completing the form, and the
frequency with which the form is submitted. The final column references the section of

the document where the form is discussed in detail. Samples of the forms can be found

in these reference sections, as well as in the Appendix.

As the table shows, the primary source of SEL data is the development and

maintenance personnel working on the projects the SEL monitors. Most of the forms

are filled out and submitted directly by developers, project leaders, and maintainers.

These forms require the individual completing them to supply basic identification

information, such as the team member's name, the project name, and the date. The

remaining fields solicit both objective and subjective information, requiring either

short answers or selection of options from a checklist. Two forms (the PMF and the

6201

2-2

Table 2-2. Estimate Data

Type Form Description

Size PEF

Resource

Schedule

PEF

PEF

SLOC

Estimated number of Iogmal

subsystems thai will be present ,n
the design of the linal system.

Eslimated numbm" of separately

maintained oomgonents that wdl
be present in the final system.

Estimated volume ol code (SLOe)

in the final system, total and

broken down by code origin: new,
modified, old.

r-_t0G(39)._$

"w

PSF) are completed bv SEL personnel based on interviews with development

personnel (usually, the project leader).

A second source of SEL data is electronic, computer-based records that SEL personnel

monitor on a regular basis. These records include computer resources accounting

records (e.g., central processing unit (CPU) time used by user account identifier),

project-specific libraries of configured source code, and organizational employee time

accounting records. SEL personnel extract data from these sources and record them on

SPFs. Although this type of data is not collected directly from the development or

maintenance team, the project leader must communicate to SEL personnel exactly

what electronic records (user accounts, library names, etc.) are to be monitored.

The third source of SEL data is the development products generated on a project. At

the transition from development to maintenance and operations, SEL personnel

analyze the source code and documentation being delivered. They also validate and

sum the data collected over the development life cycle to compute final resource use

statistics. SEL personnel record the data produced by these analyses on a PCSF and

verify them in discussions with the project leader.

6201

2-3

Table 2-3. Product Data

Type Form Description

Size PCSF

System
elements

Size measures of the developed product
at delivery to operations and

maintenance.

Data that identify and characterize
various components of the deliverecl

s_m_p+

Subsysmm _Lmt

_of_4ml ¢'o_Jm

Documontat_o_ paQes

SLOC

Executable moOu_

ScatemenB

Exec_4Lble

st&temotlts

The frequencies with which the various SEL forms are collected fall into four broad

categories:

* Startup data: Data collected when a project initially comes under SEL

monitoring

* Rate data: Data collected regularly with a predefmed periodic frequency
(weekly, biweekly, monthly, etc.)

6201

2-4

Table 2-4. Resources Data

Type Form

Staff

resources

Computer
resources

Description

Personnel effort (in hours) expended in

developing and maintaining the system..

in

C°mputer res°urces expended _i__

developing the system.

Focrn Dmion

PCSF

/

/
/

/

Total _ I=CSF I

\

\

6201

2-5

Table 2-5. Process Data

Type

Schedule

Status

Form

PCSF

DSF

Description

Actual start and end dates for each phase in

the development life cycle.

Profiles of progress achieved toward
development goals and of open item closure

activity. "_

System growth measured by profiles over
time of source code library statistics: number
of components and total SLOC.

Growth SPF

Event data: Data collected when specific milestones or development events

occur (e.g., start of project, phase transitions, configuration of a component,

implementation of a change)

Data at completion: Data collected at the transition to maintenance and op-

erations and that summarize the development portion of the life cycle

These categorizations of data collection frequency are the basis for the organization of
Sections 3 and 4.

The SEL views the software life cycle according to a traditional "waterfall" model of

non-overlapping sequential phases. Although phases often overlap in practice, a

sequential model is used to simplify classification and analysis of the data. The phases

that make up this model, discussed in more detail in the Manager's Handbook for

6201

2-6

Table 2-6. Change/Error Data

Type

Development
changes/errors

Form Description

Data that characterize changes made to
configured source code during development. '_

Maintenance

changes/errors

MCRF Data that characterize changes made to the
system during operations and maintenance:
includes classifications of the type of

maintenance being performed, the cause of
the change, the effort spent on the change,
the objects changed, and the volume and

characteristics of the changed code.

Error irdormal_n CRF J

Change profile SPF J

62t0G(39F17

Table 2-7. Annotation Data

Type

Data collection
information

Messages

Subjective
information

Form

PSF

PMF

SEF

Descnption

Information used by SEL data collection personnel to monitor

data collection activities for a given project; collected at

project startup and periodically thereafter as conditions change.

Free form messages for annotating information about a

project, the methodologies or life cycle it follows, its

relationship to other projects, or the data collected on it.

Subjective rankings that characterize the problem solved,
the process followed, the development environment, the

resources available, and the quality of the product.
OJ
¢0

6201

2-7

Table 2-8. SEL Data Collection Forms

Acronym
i

CCF

CLPRF

COF

CRF

DSF

MCRF

PCSF

PEF

PMF

PRF

PSF

SEF

SIF

SPF

WMEF

Fo ITTl name

Component Change
Form

Cleanroom Personnel

Resources Form

Component

Origination Form

Change Reoor_ Form

Development Status
Form

Maintenance Change

Report Form

Project Completion
Statistics Form

Project Estimates
Form

Proiect Messages
Form

Personnel Resources

Form

Proiect Startuo Form

Sublective
Evaluation Form

Subsystem
fnformation Form

Services/Products

Form

Weekly Maintenance
Effort Form

Source

Develooment

personnel

Development

personnel

Development

personnel

Development

personnel

Development

personnel

Maintenance

personnel

System

products/

develooment

data

Development

personnel

Devek:)pment

personnel

Oeveiooment

personnel

Development

personnel

Development

personnel

Development

person_'_;

Computer
records

Maintenance

personnel

Mechanism
lU

Form completion

Form completion

Form completion

Form completion

Form completion

Form com_oletion

Analys_s

Form completion

Interview

Form completion

Interview

Form completion

Form comoletion

Momtonng

Form completion

_esoonsiioiiitv
i

Project leader

Developers

Developers

Deve+ooers

Project leader

Maintmners

SEL personnel

Project leader

SEL personnel

Developers

SEL _ersonnel

Proiect leader

Proiect leader

SEL personnel

Maintainers

Schedule

Event

Rate

Event

Event

Rate

Event

At

coml31etlon

Startup/

rate/event

Event

Rate

Startuo/

event

At

comotetion

Event

Rate

Rate

Reference

Section

3.2.2.3

3.2.1.1

3.2.2.2

3.2.2.4

3.2. t .2

42.2.1

3.3.1

3.1.2

3.2.2.5

3.2.1.1

3.1.1

3.3.2

3.2.2.1

3.2.1.3

4.2.1.1

6201G(39)-20

6201

2-8

Software Development (Reference 2), are shown along the bottom of Figure 2-1. The

bars and wedges on the figure .illustrate the portions of the life cycle over which each
SEL form is collected.

Thus. the primary data collection activities the SEL performs over the software

development and maintenance life cycle are collecting and validating data collection

forms, monitoring and recording data from electronic records, and analyzing

development products at the transition from development to maintenance and

operations. These activities depend on regular communication between data collectors

and developers to ensure that the developers understand what they are expected to

provide and that the correct computer records are being monitored.

2.3 MANAGING THE DATA COLLECTION PROCESS

To be used effectively in analyzing and evaluating methodologies and technologies as

well as in the day-to-day monitoring and controlling of active projects, the data

collected must be available in an easily accessible electronic format and must be

monitored for accuracy and completeness. Staffresources must be allocated to perform

these database maintenance and data monitoring functions. The SEL has a dedicated

team of database programmers, data collection experts, and data librarians whose sole

task is to collect data, monitor the data collection process, and make the data available

to researchers and managers.

SEL data are stored under a relational database management system (RDBMS) hosted

on a Digital Equipment Corporation (DEC) VAX-series computer located in the

Systems Technology Laboratory (STL) at GSFC. The data collection team is

responsible for collecting SEL forms from development and maintenance projects,

entering the data from the forms into the database, ensuring the quality of the data

entered, and performing the automatic monitoring of computer records and

development products mentioned earlier. It is also responsible for designing,

implementing, and maintaining the database and its supporting application software

(References 3 through 5).

One of the most critical functions of the data collection team is to monitor the data

collection process to ensure that the data in the database are as accurate and complete

as possible. This goes beyond verifying that what a developer enters onto a form is

actually entered into the database correctly. It also involves ensuring that the developer

has completed the form correctly, both from a mechanical standpoint and from the

standpoint of correctly understanding and interpreting the questions on the form. This

is a more complex task. Clearly, the data collection team cannot check every form

submitted to make sure that the developer interpreted the questions correctly. Nor can

it follow the day-to-day details of the more than 20 projects being monitored at any

given time to judge the correctness of the data supplied.

Thus. it is crucial to establish regular two-way communication between developers and

the data collection team. Figure 2-2 illustrates the communication paths used by the

6201

2-9

===,.. _,,=

YIP'_

L'(6E}O LO_9

\

o. o

u

\

Ib

.......i;iiiiiill::;:::::::..... ::::::::::

__!.:i_-:iii;i;_i: iiiii!ii!ii
i_iiii!; i:::i:_:! iii_;ii:i;i :il;ili_i!i

:_:::_' ii!ii!!i!;!ii!!!!!!i i!;i;i_ilil

at

tl_ H u_

I

g _

0 _ E

_ - _._

e_

5

_g

_1
Ill

&
L_

6201

2-10

_ ExDecm_ons_

Figure 2-2. Communication Paths in Monitoring SEL Data Collection

SEL in monitoring data collection. The team must first make the developers aware of

the SEEs expectations by distributing copies of this document to developers and by

meeting with development teams at the start of a new project and at phase transitions

when new forms are introduced. The developers then supply the data collection team

with data---SEL forms as well as support information the team needs to monitor

computer records and development products. The data collectors periodically send out

reminders to the developers when data types that are not submitted" on a routine basis

are due or when data that were expected are not received.

In addition, once data are entered into the database, the data collection team generates

periodic reports, both tabular and graphical, that summarize the data being collected.

These reports are distributed to the leaders of development and maintenance projects

for their analysis and to see whether the data being collected support their own intuitive

understanding of what is happening on their projects.

The data collection team also performs its own analysis of database reports and

questions the developers about unusual data points or trends identified in the data.

Both of these analyses result in feedback to the data collection team, which allows it to

correct problems in the database or annotate the data to indicate unusual circumstances.

Finally, the data collection process must be flexible enough to respond to changing

needs. Often, a new technology or a new methodology will be introduced that requires

changes in the data collected. This has happened many times in the SEEs history. To

study the impact of Ada, for example, additional change characteristics specific to the

use of Ada were added. More recently, the SEL has been investigating the effectiveness

of the cleanroom methodology (Reference 6), which required different classifications

of effort data. It is the job of the data collection team to respond to such changes in data

collection needs by evaluating the effect of a proposed change on the design of the

database structure and supporting application software, data collection procedures,

and database documentation. It also involves ensuring that proposed changes do not

6201

2-11

make data collected on earlier projects obsolete and invalidate comparisons among

those projects and more recent projects. Once a change is planned, the team must

communicate the nature of the change to both developers and database users and

coordinate its implementation in a manner that minimizes its impact and
inconvenience.

2-12

SECTION 3--DATA COLLECTION IN THE DEVELOPMENT

LIFE CYCLE

This section presents detailed data collection procedures for the development phases

of the software life cycle, i.e., from requirements definition through delivery of the sys-

tem for maintenance and operations, following the life-cycle model referenced in Sec-

tion 2. It is subdivided to follow the life cycle chronologically. It first discusses data

collection activities at project startup, followed by data collection performed through

all development phases, and concluding with the data collection activities at project

completion. In each section, it provides detailed instructions for completing the corre-

sponding SEL data collection forms. These instructions begin with a discussion of gen-

eral background information needed to understand how the form is to be completed.

This is followed by line-by-line instructions for completing the form. A set of helpful
hints and caveats concludes the form instructions.

3.1 PROJECT STARTUP

When a project to be monitored by the SEL is initiated in the FDD, the first thing the

SEL must do is establish the lines of communication with the development team and

obtain some basic information about the project. To do this, a SEL data collection team

member (usually the Database Administrator (DBA), who is the primary point of con-

tact for SEL data collection issues) schedules a meeting with the project leader. This

meeting is usually held at the beginning of the requirements analysis phase. If require-

ments are defined by the development team, however, it may be held at the beginmng of

requirements definition.

The purposes of this meeting are (1) to ensure that the project leader and developers
understand their role in the data collection process, (2) to establish acronyms and

naming conventions to be used in completing SEL forms, and (3) to give data collection

personnel an understanding of the application and any unique characteristics of the de-

velopment methodology being employed.

The first purpose is accomplished by distributing this document to the developers and

reviewing with the project leader both when and where SEL forms are submitted and

the instructions for the forms that axe collected during the early life-cycle phases. The

general project information and naming conventions collected at this meeting are re-

corded on a PSE Descriptions of the application and unique characteristics of the

methodologies being employed are also recorded on the PSE

Topics that should be covered when discussing unique aspects of the project include any

approach or methodology that is new to the environment. Recent examples include

object-oriented design and cleanroom development. The discussion should also cover

any nonstandard approaches to development, such as a prototype or spiral life cycle, or

whether the project will be implemented in builds or releases. For SEL purposes, a

6201

3-1

"build" refers to a multistage implementationphase. Eachbuild mayculminate in a
distinctsystemtestphase. A "release" refersto alife cyclewhereeachsuccessiveitera-
tion of the systemrequiresseparatedesign,implementation, systemtest, and,often,
acceptancetestphases.In otherwords, eachreleasehasadistinct life cycleandusually
resultsin adeliveredproduct. As a general rule, a project that is implemented in multi-

ple builds should be treated as a single project in the SEL database. Projects that are

developed in releases generally require each release to be treated as a separate project
in the database.

In cases where the life cycle to be followed by the project does not conform to the SEL

sequential phase model, the project leader and SEL data collection personnel should

agree on how the actual life cycle will map to SEL phase definitions. This information

as well should be documented at the startup meeting.

The final information to be obtained at project startup is an initial set of project esti-

mates. These estimates are recorded on a PEF and include the following types of in-
formation: gross estimates of resources, software product sizes, dates on which the

development life-cycle phases of the project are scheduled to start, and a projected

project end date. The estimates provided reflect the project size and resource expendi-

ture when the software is delivered for maintenance and operations.

3.1.1 Project Startup Form (PSF)

General Information

The PSF (Figure 3-1) is a template used by SEL data collection personnel for recording

information collected at the project startup meeting. It is not filled out directly by de-
velopers. The information recorded on it allows the data collectors to initialize the

project in the database so that the data librarians may begin collecting and entering the

standard forms collected during development. In addition to being used at the startup
of a development project, this form can be used to document similar information at a

project's transition to maintenance and operations, a use of the form discussed further

in Section 4. The instructions that follow focus on its use at the beginning of develop-
ment.

The information recorded on the PSF may change during the project. It is not neces-

sa W to complete another PSF to document these changes. The data collection team

distributes a monthly data collection status report for each active project being moni-

tored. The report lists project personnel, computer accounts, configured source library

names, computer systems, forms being collected, and task numbers. It is updated each

month by the project leader so that the data collectors can keep this "data about the

data collection" current on each project. A discussion of this report can be found in

Section 3.2.1.3, along with a sample report page.

The initial general messages should be supplemented during development and at ihe

transition to maintenance. This happens when a development team member (usually

6201

3-2

Name:

Project:

PROJECT STARTUP FORM

Date:

Project Full Name:

PLEASE PROVIDE ALL AVAILABLE INFORMATION

Project Type:

Contacts:

Language:

Computer System:

Account:

Task Number:

Forms To Be Collected: (Circle forms that apply)

PEF PRF CLPRF DSF SPF SIF COF CCF

GeneraJ Notes:

CRF SEF PCSF WMEF MCRF

lk

Personnel Names (indicate with if not in database):

NOVEMBER 19<31

_o

Figure 3-1. Project Startup Form

6201

3-3

the project leader) communicates information to SEL personnel that explains any

unique characteristics of the project, unusual data points or trends, or anything unusual
about the data collection process. The SEL data collector records this information on a

PMF (see Section 3.2.2.5) and enters it into the database.

Line-by-Line Instructions

Name: Enter the name of the data collection team member (usually the SEL DBA)
conducting the startup meeting and completing the form.

Project: Enter the acronym (up to 8 characters) by which the project will be referred,

as agreed to with the project leader at the startup meeting. This acronym will be used by

all developers on all subsequent SEL forms to be submitted for the project.

Date: Enter the date on which the project startup meeting is held.

Project full name: Enter the complete project name, with spacecraft and application
acronyms fully spelled out.

Project type: While discussing the nature of the application with the project leader,

determine which of the following project categories best describes the application, and
enter the project type code onto the form:

Type Code Description

AGSS Spacecraft Attitude Ground Support System

SIMULATOR Spacecraft Dynamics or Telemetry Simulator

!MP&A !Mission Planning and Analysis System

GRAPH/UI Graphical display or user interface system

ATTITUDE Attitude application (not an AGSS or simulator) - may be mission-
specific or general use

ORBIT Orbit application - may be mission-specific or general use

REALTIME Real-time data processing or control application

DATABASE Database support application - data entry, report generation, etc.

TOOL Software development or management tool

OTHER Application that does not fall into any of the above categories

Contacts: Enter the names of contractor and GSFC personnel responsible for manag-

ing the project. This includes the GSFC assistant technical representative (ATR), the

contractor task leader, and the contractor section manager, one of whom is usually des-

ignated the key point of contact (project leader) for data collection purposes.

8201

3-4

Language: Enter the primary language in which the application is being developed,

along with any other languages used on the project.

Computer system: Enter the computer system on which the project is being devel-

oped, as well as that for which the system is targeted, if different. Enter all types of ma-

chines to be used if the system is distributed across multiple hardware platforms.

Account: Enter the names of the computer accounts to be monitored automatically by

SEL personnel for CPU hours used and number of runs made. In the Flight Dynamics

Facility (FDF) mainframe environment, this is the sponsor code. In the STL VAX envi-

ronment, this is the group identifier common to all user identifiers for personnel work-

ing on the project. These accounts may not be known at project startup. If this is the

case, the project leader should be reminded to communicate that information to the

SEL as soon as it is available.

Task number: If the project is being developed by a contractor development team,

enter the task number underwhich the contractorwork is being performed. This is used

by the SEL in automatically monitoring certain types of effort data extracted from per-

sonnel timekeeping records.

Forms to be collected: Circle the forms to be collected on the project. The standard

set of forms collected on a typical project includes the PEF, either the PRF or the

CLPRF (depending on the development methodology being followed), the COE the

CCF, the CRF, the SEE and the PCSF. Usually, the DSF and the SPF are also collected,

but there are cases where one or both may not be collected.

General notes: Enter free-format text that describes the application and any unique

features about the development life cycle or methodology or about the data collection

being performed on the project.

Personnel names: Enter the names of personnel who will be submitting forms on the

project. If an individual has submitted forms on other projects in the past, use his/her

name as it already appears in the database. For someone new to SEL data collection,

record his/her full name and establish a database name, which is normally first initial

followed by last name. In cases where this name conflicts with an existing name in the

database, a variation may be used, such as adding the middle initial. New names should

be identified by an asterisk, indicating that data collection personnel must enter them
into the database. Be sure to leave a list of new names with the project leader and

instruct him/her to have developers use the agreed-upon names when completing

forms.

Helpful Hints

. Determining a project type is sometimes a source of confusion. One varia-

tion arises when a subsystem of an Attitude Ground Support System (AGSS)

is developed by a separate development team and tracked as a separate

project by the SEL. This type of project should get a project type of AGSS,

6201

3-5

and there should be a note in the general messages connecting it to the other

projects being monitored that make up the AGSS.

One technique for deciding the project type is to go through the list of types in

the order presented above and select the first category that applies.

?
_° There should be a single contact designated as project leader. This person

will be responsible for all communication with the data collection team re-

garding data collection matters. He/she will also be the person who com-

pletes PEFs and DSFs, and to whom the SEL sends reminders when
information is due.

. The SEL does not monitor computer-use accounting information for work

done on personal computers (PCs). If a major portion of actual development

work (coding and testing) is being done on PC, s, the SEL will not monitor any

computer-use information for the project. This does not, however, include

using PCs merely to generate documentation or design diagrams.

. When determining what forms will be collected, the SPF (which is completed

by data collection personnel with automatically monitored data) will not be

submitted if none of the three types of data recorded on it can be monitored.

For example, SPFs would not be submitted for an alI-GSFC project (having

no contractor timekeeping records to monitor) in which development was

being performed on PCs (prohibiting the collection of both computer-use

and growth data).

3.1.2 Project Estimates Form (PEF)

General Information

The PEF (Figure 3-2) is submitted by the project leader at startup and every 6 to

8 weeks thereafter throughout the development phases of the project life cycle. It is

also submitted when new estimates are made at project milestones. This information

provides a historical record of project size, schedule, and resource-use estimates that

may be used in analyzing the project when completed. These estimates should be pro-

jections for the delivered system and should not include anticipated changes and expen-
ditures in the maintenance and operations phase.

A project leader may submit a PEF at any time to inform the SEL of updated estimates.

The SEL, however, sends out reminders that new estimates are due when 6 weeks have

transpired since the last form was received. These reminders are in the form of a PEF

completed by SEL personnel with the estimate values submitted on the most recently

received form. Upon receiving this reminder, the project leader is to enter the form

date and mark up the existing estimates on the form to indicate updates. If the project

leader has not made a new estimate since the last PEF received, he/she may simply

enter the form date and mark on the form that no updates need be made.

6201

3-6

PROJECT ESTIMATES FORM

Name:

Project:

Phase Dates (Saturdays)

Phase Start Date

Requirements Definition

Oes_jn
Implementation

System Test

Acceptance Test

Cleanup

Proiect End

Date:

Staff Resource Estimates

Programmer Hours

Management Hours

Services Hours

Project Size Estimates

Number of subsystems

Nu_ of components

Source Lines of Code

Total

New

Modified

Old

Note: AJIof tJle values on _is form are to be.

estimates of projected vaJues at completion
of the project. This form should be
submitted with UlXlated esdrrmtes every 6 to
8 weeks during the course of tile project.

i

Number:.

Date:

Entw_d by:

Checked by:

Fo¢ Ubratan's Use Orgy

_D

:D

NOVEMBER 1991

Figure 3-2. Project Estimates Form

6201

3-?

As the project proceeds through its life-cycle phases, the phase dates supplied for com-

pleted phases should represent the actual dates on which the phase transition occurred.

The remaining estimate information is always a projection of resources used and proj-

ect size at the end of the project. Resource estimates in terms of staff-hours are pro-

vided for technical, management, and services personnel. Project size estimates

include the number of subsystems, components, and SLOC. The latter includes the to-

tal SLOC and a breakdown by new, modified, and old SLOC.

Line-by-Line Instructions

Name: Enter the SEL database name of the project leader completing the form. Usu-

ally, the database name consists of a first initial followed by a last name. Questions
about database names should be referred to the SEL DBA.

Project: Enter the acronym selected at project startup that uniquely identifies the
project being monitored.

Date: Enter the date on which the form is completed.

Phase Dates

Enter the estimated start dates (or actual start dates for phase transitions that have al-

ready passed) for each of the listed phases that apply to the project. These phases map

to the SEL life cycle introduced in Section 2 with two exceptions:

. The design phase on the PEF encompasses the requirements analysis, pre-
liminary design, and detailed design phases of the SEL model.

. The PEF includes a cleanup phase that startswhen the system is accepted and

ends with the delivery of system products to a maintenance and operations
team.

To supply accurate phase dates on the PEF, it is necessary to understand the definition

of the phases in the SEL life-cycle model. The SEL uses the "waterfall" model to define

this series of phases. The SEL realizes that, in practice, there is normally a period of

overlap during the transition from one phase to the next. However, it is recommended

that discrete events be used to signal the end of one phase and the beginning of the next

phase. SEL phase definitions and guidelines for beginning new phases are summarized

in Table 3-1. A more complete definition of project phases can be found in the Recom-

mended Approach to Software Development (Reference 7).

If the project is following a nonstandard life cycle, the phases of that life cycle should

have been mapped to the SEL phases in an agreement discussed at the project startup

meeting. If, for example, each build in the implementation of a given development ef-

fort includes its own system test phase, it might be agreed that, for the SEL PEF, the

system test phase beginswhen integration testing is complete for the first (or second, or

last) build. The key is to have identified ahead of time a discrete event to be used to

signal the phase transition.

6201

3-8

Table 3-1. SEL Phase Definitions

SEL Phase

Requirements
Definition

Design

Implementation

System Test

Acceptance Test

Cleanup

Activities

Define requirements
Write requirements and functional

specifications

Requirements analysis
Preliminary design
Detailed design
Design reviews and responses

to questions

Code, read, and unit test modules
Integration and integration
testing

End-to-end testing of integrated

system

Execution and evaluation of

acceptance tests

Generation of system tape
Completion of system documen-

tation

Start Date

Start of project. Note: only applicable
if developers are responsible for
generating system requirements

Delivery of requirements and
functional specifications or start of
software development task

Critical Design Review (CDR)

Successful completion of integration
testing

Successful execution of all system
tests

Acceptance of the system
¢3

o

Phases must begin on a Saturday. Saturday dates are used to avoid any ambiguity as to

which phase a given piece of data belongs, since much of the weekly rate data the SEL

collects are tagged with a Friday date to represent the previous week's activity. If the

event that signals the transition from one phase to the next occurs on a weekday (as it is

most likely to do), the date of the nearest Saturday should be used. If a given phase is

not included in the life cycle of a particular project, a start date for that phase need not

be provided. For example, if the start date for acceptance test is omitted, it will be as-

sumed that system test runs from the system test start date to the cleanup start date. By

the same token, phases should not begin and end on the same date. At least one phase

date and a project end date must be provided. If they are not, the PEFwill be rejected at

data entry.

Programmer hours: Enter the total technical hours projected to be expended by the

delivery of the operational software product. (See hint 2.)

Management houm: Enter the total management hours projected to be expended by

the delivery of the operational software product. (See hint 2.)

Services hours: Enter the total support services hours projected to be expended by

the delivery of the operational software product. (Support services personnel include

secretaries, librarians, technical publications personnel, couriers, etc.)

6201

3-9

Number of subsystems: Enter the projected number of subsystems that will be in-

cluded in the design of the finished product. Subsystems are defined as a logical parti-

tioning of the system design. This should not be confused with the mutually exclusive

partitioning of system components used to define subsystem prefixes (see Sec-

tion 3.2.2.1). For example, FORTRAN COMMON block components may be refer-

enced in more than one logical subsystem and may be grouped under a separate

subsystem prefix. They would not be counted as a separate subsystem of the system de-

sign, however. For object-oriented designs, logical subsystems are sometimes nested

within other subsystems. Each of these logical subsystems should be countedwhen pro-
viding the subsystem estimate. Also see hint 4 for a discussion of reuse and size estima-
tion.

Number of components: Enter the projected number of components that will be de-

livered as part of the finished software product. A component is defined as the lowest

level configuration item of the system or the smallest piece of the system maintained in

its own file. Components include source code (FORTRAN subroutines, functions; Ada

procedures, package specifications; display panels written in a graphics language; as-

sembly language routines, etc.) as well as data files that are configured elements of the

delivered system (definitions of screen displays, translation tables, etc.). Components

do not include data files used to test the system or command procedures used to build

the system, as these will vary in operational use and are usually not delivered as config-
ured pieces of the system. Also see hint 4 for a discussion of reuse and size estimation.

Source lines of code-total: Enter the projected total SLOC for the delivered soft-

ware product. A source line of code is def'med as a carriage return or card image within
a component. This includes blank lines, comments, code, and data. The total SLOC

must equal the sum of the new, modified, and old code estimates on the following lines.
Also see hint 4 for a discussion of reuse and size estimation.

Source lines of code-.-new: Enter the projected total new SLOC that are to be de-

veloped for the system. Also see hint 4 for a discussion of reuse and size estimation.

Source lines of code--modifled: Enter the projected total SLOC that are to be re-

used from other sources with modifications to meet the requirements of the system.
Also see hint 4 for a discussion of reuse and size estimation.

Source lines of code---old: Enter the projected total SLOC that are to be reused
from other sources with no modification. Also see hint 4 for a discussion of reuse and

size estimation.

.

Helpful Hints

One of the most common errors in completing the PEF is to provide a re-

quirements definition date when the requirements definition phase is not

monitored by the SEL. This results from confusing requirements definition

with requirements analysis. Remember that, for purposes of SEL phase

dates, requirements analysis is part of the design phase.

6201

3-10

. One area of potential confusion is the distinction between technical and

management hours. Generally, estimation algorithms predict management

effort as some percentage of total effort or some percentage of the technical

effort that is added in to compute total effort. For early estimates, this is the

number that should be used. The confusion ariseswhen a project leader later

tries to update the estimate based on actual and projected expenditures re-

corded as "Project Management" hours, which are automatically collected

by SEL personnel from accounting records (see discussion under the SPF

instructions, Section 3.2.1.3). Those hours do not include management

hours charged by line managers, who record both technical and management

hours on PRFs (Section 3.2.1.1). The proper way to update the estimate is

to ignore how management charges are reported to the SEL (whether via

SPF or PRF) and use actual and projected expenditures for all charges made

to management accounts in the timecard accounting system being used to

track these charges.

. It is expected that early estimates will be coarse but will improve as more is

learned about the system and updated estimates are submitted. Thus, some

of the information requested on the PEF may not be known for the earliest

estimates. The project leader is encouraged to think about all of the items

on the form and try to come up with an estimate of each. If this is not possible,

however, the minimum set of estimates required on the form includes a set

of phase dates (including a project end date on which the system will be deliv-

ered), and estimates of technical hours, management hours, number of com-

ponents, and total SLOC. More complete estimates will then be expected on

subsequent forms.

. Questions often arise as to how reuse should be treated in supplying size esti-

mates. Obviously, reused source code that is copied into the project config-

ured librar}', maintained there, and delivered as part of the system should be

included in both the component count and the SLOC counts. It is a little less

clear how to treat reused software that is maintained separately and linked

in to the system. The guideline here is that if it is linked in from an institution-

ally maintained tool (such as a graphics display tool or vendor-supplied,

language-specific library of mathematics routines), it should not be counted.

If, however, the reused software is linked in from a separately maintained ap-

plication or a generic set of application-specific software designed to be re-

used, this software should be included in the size estimates, whether it

involves linking in single components or entire subsystems. Such reuse

counts should be reflected in the subsystem, component, total SLOC, and old

SLOC estimates. Examples of linked-in reuse that should be counted in the

FDD environment are the Multimission Three-Axis Stabilized Spacecraft

(MTASS) and Multimission Spin-Axis Stabilized Spacecraft (MSASS)

6201

3-11

generic attitude ground support applications (References 8 and 9, respec-

tively) and the Code 550 Reusable Software Library (RSL) (Reference 10).

3.2 DATA COLLECTION DURING DEVELOPMENT

Once startup information and an initial set of estimates have been collected, SEL data

collection continues through the development life-cycle phases. As discussed in Sec-

tion 3.1.2, the SEL continues to collect estimate data on PEFs at major project mile-

stones and at 6- to 8-week intervals, sending reminders to project leaderswhen updates

are due. In addition, the SEL begins to collect rate data. As can be seen by examining

Table 2-8 and Figure 2-1, the rate data forms include the PRF (CLPRF), the DSF, and

the SPE Rate data and the forms used to collect them are discussed in Section 3.2.1.

Figure 2-1 also shows the event data forms collected through development. These in-

clude the CCE the COE the CRF, the PME and the SIF. Event data and the corre-

sponding forms are discussed in Section 3.2.2.

3.2.1 Rate Data

Rate data collected by the SEL originate from two sources. One source is the forms

completed by the developers on the project. These forms include the PRF and its clean-

room variation (CLPRF), and the DSE The other source of rate data is automatic mon-

itoring performed by the SEL data collection team. The data types monitored
automatically include growth, computer resources, and a subclass of effort data that is

not recorded by developers on the PRF. SEL personnel record these automatically

monitored rate data on an SPE These four forms are discussed in the following sec-
tions.

3.2.1.1 PERSONNEL RESOURCES FORM (PRF) AND

CLEANROOM PERSONNEL RESOURCES FORM (CLPRF)

General Information

Effort data are collected on either a PRF (Figure 3-3) or a CLPRF (Figure 3-4). Which

resource form is used is determined by the methodology used to develop the software.

Developers on projects following the cleanroom methodology complete the CLPRF;

those on all other projects complete the regular PRF.

The PRF details the standard development activities performed during a given week

and identifies how many hours were expended on each of them. The PRF also contains

an area for recording hours spent on special activities. A special activity is any activity

of current specific interest to SEL researchers, such as rework, documentation, or

training in a new methodology. The CLPRF differs from the PRF in that the standard

development activities and special activities are geared to accommodate the study of
cleanroom techniques.

A PRF/CLPRF is submitted weekly by every member of the development team who

performs technical work on the project. This includes managers who perform both

6201

3-12

Name:

Project:

Personnel Resources Form

Date (Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B should equal total hours in Section A)

ActMty Acidity Definitions Hours

Predesign Understanding the concepts ot the system. Anywork prior to the actual design (such
as reauirements analysis).

Create Design Development of the system, subsystem, or components design, includes development
of PDL design diagrams, etc.

Read/Review Oesign Hours spent reading or reviewing design. Includes design meetings, formal and informal
reviews, or walkt,hroug_.

Write Code Actually coding systemcomponents, tncludes both desk and terminal code development.

Re__d/ReviewCode Code reading for any purpose other than isolationof errors.

Test Code Units Tes_ng individual components o| the system, includes wnting test dnvers.

Debugging Hours spent finding a known error in the systemand developing a solution. Includes gen-
eration and executionof tests associated w_thfinding the error.

IntegrationTest Writing and executing tests that integrate systemcomponents, including system tests.

Acceptance Test Running./supportingacceptance tes_ng.

Other Other hours spent on the project not covered above. Includes management, meelings,
training hours, notelx_oks, system descriptions, users guides, etc.

SECTION C: Effort On Specific Activities (Need not add to A)

(Some hours may be counted in more than one area; view each activity separately)

ReworK: Estimate of total hours spent that were caused by unplannedchanges or errors. Includes
effort caused by unplanned _anges to specifications, erroneous or changed design, errors or
unplanned changes to code, changes to documents. (This inctudes all hours spent debugging.)

Enhanc_ng/Retining/Optimizing: Estimate of total hours spent improving the efficiencyor cladty of design, or
code, or documentation. These are not caused by required changes or errors in the system.

Documenting • Hours spent on any documentation of the system. Includes development of design documents,
prologs, in-_ne commentary, test plans, system descriptions, users guides, or any other system
documenta_on.

Reuse: Hours spent in an effort to reuse oomponents ot the system. Includes effort in looldng at other
system(s) (_es=gn,code, or documentation. Count total hours in searching, applying, and testing.

For l.Jbranan's Usl Only

Nummr:

[:)am:

NOVEMBER 1991

Figure 3-3. Personnel Resources Form

6201

3-13

Name:

Project:

Personnel Resources Form

(CLEANROOM VERSION)

3 ate (Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activ_ _Total of hours in Section B should eaual total hours in Section A)

Activity ,_-"_'ityDefinitions

Predesign Understandng the concepts of the system. Any work pncr to the actual design (such
as requirements analys=s).

Pretest Oevel_ng a testplan and building _e test environment,tnctodesgenerating test cases,
generating JCL compilingcomponents, butting libr_es, and defining inputs and
prol_litJes,

Create Design Development of the system,subsystem,or components resign. _ncludesiooxstructure
decomlx)sltJon,steD_se refinement,devet_omentof POL 3esJgndiagrams,etc.

Ver_fy/RewewDesign Includes design meetings, formal an informalreviews,a,'_waiktnrouqns.

Write Code Actually codingsystemcomponents. Includes i0otlldes_ and terminal code develoomem.

Read/ReviewCode Code readingfor any purposeother thanisolation of errors. Includes venfying and
revie_ng codetor correctness.

independent Test Execu_ngand evaluating testsot systemcomponents.

Response to SFR Isolating a tester-repotted problemanddeveloping a soiuDon, ln_udes writingand
reviewing desJgnor code to isolate and correcta tester-reoonedoroOtem.

AcceDtanceTest Running/sup_mngacceptancetes_ng.

Other Other hours _ent on the oro_eCtnot covere(l a_ove. IncHes management, mee_ngs,
training hours,notelx_oks, system descnOtions,users gu:ces, etc.

Hours

SECT;ON C: Effort On Specific Activities

Meff_dokx]y UnderstanOing/Oiscus_n: Estimate tile total _urs spent learning, ciscusszng, reviewing or
attemptingto understandcleanroom-retated metndds and te_nl(:lues. Includes a, :me s_entin training.

_orIJ_an;m'i Us= Only

Nun"of:

Oa_l:

NOVEMBER 1991

Figure 3-4. Personnel Resources Form (Cleanroom Version)

6201

3-14

technicalandmanagementwork. A PRF/CLPRF is required from every team member

for each week he/she is assigned to the project, even for weeks in which no hours are

worked on the project (e.g., vacation or temporary assignment to another project). The

"zero-hour" form is the mechanism by which the SEL data collectors ensure that the

effort data collected for a given week are complete. Project leaders receive reminder

notices for all team members from whom the SEL does not receive a form in a given

week. The SEL maintains a list of developers currently assigned to each monitored

project and uses it to generate these reminders. The list is given to project leaders to

update each month as part of the data collection status report (see discussion and exam-

ple in Section 3.2.1.3).

The SEL expects that the project leaderwill help to assure the quality of data submitted

on PRFs and CLPRFs. He/she should spot check the PRFs submitted by team mem-

bers to ensure that the hours recorded match those the team member charged to the

project in the organization's timekeeping system and that the activities under which the
team member recorded hours are appropriate for the types of activities being per-

formed on the project.

Line-by-Line Instructions

Name: Enter the SEL database name of the developer completing the form. Usually,

the database name consists of a first initial followed by a last name. Questions about
database names should bereferred to the SEL DBA.

Project: Enter the acronym selected at project startup that uniquely identifies the proj-

ect being monitored. Check with the project leader if unsure of the correct name.

Date (Friday): Enter the Friday date corresponding to the end of the week for which

hours are being recorded. Data are to be reported on this form for all work performed

on the project during the preceding Saturday-through-Friday period.

Section A

Total hours spent on project for the week: Enter the total hours actuallyworked on

the project for the current week. This includes any overtime, whether paid or unpaid. It

does not include paid hours not charged to the project, such as sick time, holidays, or

vacations. Note that this number must equal the sum of the hours recorded for the de-

velopment activities in Section B. If partial hours are recorded, enter them in decimal

form to the nearest tenth of an hour. Do not enter fractions. This also applies to all of

the activity hours in Sections B and C.

Section B for PRFs

Predesign: Enter the number of hours during the current week spent understanding

the concepts of the system before any actual design work. This activity includes

requirements definition and requirements analysis. It also includes the analysis of any

6201

3-15

changesmade to requirementsor specifications,regardlessof where in the life cycle
theyoccur.

Create design: Enter the number of hours during the current week spent performing

design activities, such as high-level partitioning of the problem, drawing design dia-

grams or structure charts, maintaining a data dictionary, specifying components, writ-

ing prologs and program design language (PDL), and compiling design notebooks or
documents.

Read/review design: Enter the number of hours during the current week spent re-

viewing design materials. This includes formal design reviews, informal reviews or

walkthroughs, and studying the current system design or that of other systems (such as
those from which software is being reused).

Write code: Enter the number of hours during the current week spent actuallywriting

code, whether modifying reused components, developing new components, imple-
menting a change, or correcting an error. It includes both desk and terminal time. It

also includes writing code when developing prototypes.

Read/review code: Enter the number of hours during the current week spent reading

code. This includes desk checking, reviewing the code of other team members, studying

old code for potential reusability, and preparing for and attending code inspections. It
does not include studying code to isolate an error.

Test code units: Enter the number of hours during the current week spent unit testing

individual system components. This includes time spent devising test cases, developing

test matrices, and coding test drivers and program stubs, as well as time spent actually

executing and evaluating tests. It does not include time spent isolating and correcting
errors encountered during the testing.

Debugging: Enter the number of hours during the current week spent isolating errors

in the system and developing a strategy for their solution. This includes time spent

studying code, generating and executing special test cases, inserting debug code, and

any other steps taken to isolate the error. Once the source of the error has been found,

however, the time spent implementing the correction and performing regression test-
ing should not be considered debugging time. Rather, it should be recorded under the

appropriate designing, coding, and testing activities.

Integration test: Enter the number of hours during the current week spent integrating

system components and testing integrated system components. This includes the gen-

eration of test plans; execution of build, integration, or release tests; and system testing.
It does not include, however, isolation and correction of errors that were uncovered as a

result of such testing.

Acceptance test: Enter the number of hours during the current week spent executing
acceptance tests or supporting the acceptance test team in the execution of such tests.

Do not include time spent isolating and correcting errors that occur during acceptance
testing.

3-16

6201

Other: Enter the number of hours during the current week that do not fall into any of

the above categories. This category covers such activities as meetings, management,

travel, training, configuration management, and documentation.

Section C for PRFs

Rework: Enter the number of hours during the current week spent reworking any por-

tion of the system for any unplanned reason. This includes changes to the require-

ments, unforeseen hardware or software limitations, and correction of errors. These

hours should include all hours recorded for the debugging activity in Section B. In addi-

tion, however, they should include the hours spent actually correcting errors and testing

the corrections. Note that this category is not limited to the rewriting of code but

includes redesigning, regression testing, and even updating documentation.

Enhancing/refining/optimizing: Enter the number of hours during the current week

spent changing the system to improve the clarity or efficiency of the design or code or to

improve system performance. This does not include changes made as a result of un-

foreseen requirements changes and error corrections.

Documenting: Enter the number of hours during the current week spent generating

or updating system documentation. This includes development plans, design docu-

ments, in-line comments in code, prologs, test plans, system descriptions, user's guides,

and project histories.

Reuse: Enter the number of hours during the current week spent attempting to reuse

software from other systems. This includes reuse of design and documentation as well

as of actual code. It includes the time spent searching for potential reusable compo-

nents, evaluating them, modifying them to meet system requirements, if necessary, and

testing them. It also includes evaluating the functionality of and interfaces with reused

software that is linked to the system, rather than copied in as source code.

Section B for CLPRFs

Predesign: See PRF instructions. This activity is performed by both developers and

testers.

Pretest: Enter the number of hours during the current week spent writing a statistical

test model, developing a test plan, and building the test environment. This activity in-

cludes configuration management, creating job control language (JCL), compiling

components, building libraries, and defining inputs and probabilities. This activity is

performed by testers only.

Create design: Enter the number of hours during the current week spent performing

design activities, such as developing a state machine representation, specifying module

functionality, defining data, and writing PDL. This activity is performed by developers

only.

62.01

3-17

Verify/review design: Enter the number of hours during the current week spent re-

viewing design materials. This includes formal design reviews, informal reviews or

walkthroughs, and studying the current system design or that of other systems (such as

those from which software is being reused). This also includes reviewing redesign work

resulting from resolving software failure reports (SFRs), or from implementing specifi-

cation modifications. This activity is performed by developers only.

Write code: See PRF instructions. This activity is performed by developers only.

Read/review code: See PRF instructions. This activity is performed by developers

only.

Independent test: Enter the number of hours during the current week spent execut-

ing and evaluating tests of system components as an independent tester. This activity is

performed by testers only.

Response to SFR: Enter the number of hours during the current week spent isolating

a problem reported by a tester on an SFR, and developing a solution. This activity is

performed by developers only.

Acceptance test: See PRF instructions. This activity is performed by both developers

and testers.

Other: See PRF instructions. Note, however, that configuration management is a Pre-

test activity in the cleanroom methodology and should not be included in the Other

category. This activity is performed by both developers and testers.

Section C for CLPRFs

Methodology understanding/discussion: Enter the number of hours during the

current week spent learning, discussing, reviewing, or attempting to understand the

cleanroom techniques and method. This also includes any training.

Helpful Hint

Perhaps the most common error made by developers in completing the PRF is to

assume that the activities underwhich they record their hours must match the proj-

ect's current life-cycle phase. They might assume, for example, that if the project

is in the preliminary design phase, all of their hours should be recorded under the

Create Design and Read/Review Design activities. In fact, they may be spending

time reviewing requirements (Predesign), developing prototypes (Write Code,

Debugging, etc.), or examining code for potential reuse (Read/Review Code). As

another example, a developer resolving a problem during the system test phase

may be tempted to charge all of his/her hours to Integration Test, when time spent

isolating the problem should really be charged to Debugging, time spent creating a

solution should really be charged to Write Code (and possibly to Create Design as

well), and time spent retesting the corrected unit should really be charged to Test

6201

3-18

CodeUnits. It isextremelyimportant to rememberthat PRFactivitiesdonot map
directly to calendarphasesandto report the time spentperformingeachactivity as
accuratelyaspossible.

3.2.1.2 DEVELOPMENT STATUSFORM (DSF)

General Information

The DSF (Figure 3-5) is used to record status data, requirements measures, and discre-

pancies. Status data are measured as progress toward a target goal. Requirements

measures and discrepancies are measured as a number of reported events that require a

response and the number of those events to which a response has been made.

As shown in Figure 2-1, DSF collection begins in requirements analysis and continues

through system delivery. Requirements measures are recorded through that entire

span. Status data are added in detailed design, and discrepancies are added in system

test.

It is the responsibility of the project leader to complete the DSF biweekly (every other

week). Since this deviates from the weekly norm for rate data, the SEL distributes to

each project leader a DSF preprintedwith the most recently submitted data for his/her

project in weeks when a DSF is due. This way, the project leader need only mark up the

form to indicate values that have changed since the last form submitted (Figure 3-6).

There is a box on the form to check if no changes are necessary.

It is anticipated that project leaders are tracking the types of data collected on the DSF
and have their own mechanisms and tools for doing so. There may, however, be cases in

which not all of the data types are being tracked. A small project, for example, that de-

veloped its own requirements may not go through the formality of using requirements

question-and-answer forms. Thus, the DSF is intended to capture whatever project

leaders are measuring. They are not required to synthesize data that they would not

normally track in the course of managing the project.

Status data are generally monitored only until the target value is reached. Usually, this .

corresponds to a calendar phase of the life cycle. There may, however, be periods of

overlap during which more than one type of status data is measured. If the prolog and

PDL for the units in each build are generated at the beginning of the build, for example,

design status may be measured through the implementation phase at the same time that

code status is being measured.

When a status measure reaches its target, measurement should stop on that activity.

Rather than having data collectors make that decision and automatically stop

monitoring on a given activity, the SEL relies on the project leader to indicate when a

given activity is complete. This is done by markingthe status data preprinted on the

form with a slash through the values fields, as shown on the sample preprinted form

(Figure 3-6). This will tell the data collectors not to enter the values in those fields and

will stop those values from appearing on future preprinted forms distributed for

updates.

6201

3-19

DEVELOPMENT STATUS FORM

Name:

Proiec_:
Date:

Please complete the section(s) that is appropriate for the current status of the project.

Design Status

Planned total number of components to ae des_Jneo

(New, modified, and reused)

Number of comDonents designed

(Prolog and POL have been completed)

Code Status

Planned total nur'nl:_r of comDonents to be coded

(New, moaJtiea, and reused)

Number ot components completed

(Added to controlled library)

Testing Status System Test Acceptance Test

Total number o! separate tests planned

Number of tests executed at least one t_me

Number ot tests passed

Discrepancy Tracking Status (from beginning of system testing)

Tota_ numoer ot discrepanczes reported i
i

Total numoer of dJscrepanczes resolved

Specification Modification Status !lrom beginning of requirements analysis)

Total number of specification modifications receJve_

Total numOer of specification modifications combletea (imolemented] i

,_equirements Questions Status i from beginning of requirements analysis)

Total number ot questions submftted to anatysts !Total numl3er of questions answered by analysts i

Check i_ere t/there

are no changes

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

NOVEMBER 1991

Figure 3-5. Development Status Form

6201

3 -20

DEVELOPMENT STATUS FORM

Name: PLLADER

Project: PROJ_CTX

Date: 19-/UL-9!

Please complete the

section(s) that is

appropriate for the curren_

status cf the project.

Check here

if there are

no changes

[--l i
I

For Librarian's Use Only i

Number: !

Date:

Entered by:

Checked by:

*** This is the latest data as of 05-JL_-91

Design Status

Planned total number of components to be designed

(New, modified, and reused)

Number of components designed

(Prolcg and PDL have been completed)

Code Status

Plan_ed total number of components to be coded

(New, modified, and reused)

Number of components completed

(Added zo controlled library)

Testing Status System Acceptance

Total number of separate tests planned 59

Number of tests executed at least one time _

Number of tests passed 3

Discrepancy Tracking Status (from beginning of system testing)

Total number of discrepancies reported _

Total number of discrepancies resolved I_

Specification Modification Status (throughout entire life cycle)

Total number of specification modifications received 13

Total number of spec. mods. completed (implemented) 13

Questions to Analysts Status (throughout entire life cycle)

Total number of questions submitted to analysts _7

Total number of questions answered by analysts _
J

Figure 3-6. Preprinted DSF for Update

6201

3-21

Line-by-Line Instructions

Name: Enter the SEL database name of the project leader completing the form. Usu-

ally, the database name consists of a first initial followed by a last name. Questions

about database names should be referred to the SEL DBA. After the initial form, this

name will be preprinted on the forms distributed for update. If the project leader

changes, this name should be crossed out and the name of the new project leader writ-
ten in.

Project: Enter the acronym selected at project startup that uniquely identifies the proj-

ect being monitored. After the initial form, this name will be preprinted on the forms

distributed for update.

Date: Enter the Friday date corresponding to the week for which data are being re-

ported. After the initial form, this date will be preprinted on the forms distributed for

update. See hint 1 for a discussion of date tagging DSF data.

Design Status Section

Planned total number of components to be designed: Enter the total number of

components to be included in the system. This number should include new, modified,

and reused components to be developed on the project and maintained in the project's

configured library. It does not include components that are reused by linking them to

the system from a source external to the project. A component is a system element that

is developed, maintained, and tracked as a separate configuration item (i.e., it is main-

tained as a distinct member of the project's configured library). This target number of

units may fluctuate, but should reflect the entire system and not just the target number
for the current build.

Number of components designed: Enter the number of components that have

been designed. A component is considered designed when a prolog and PDL have been

written, inspected, and certified. If the component does not contain executable code,

the design may not include PDL. However, it is still considered complete when it has
been inspected and certified.

Code Status Section

Planned total number of components to be coded: Enter the total number of

components scheduled for implementation. Refer to the Design Status Section for the

definition of a component and a discussion of what components are included in this

target.

Number of components completed: Enter the number of components that have

been coded, unit tested, certified, and added to the configured library. For cleanroom

projects, components should be counted as complete when they have been certified and

moved into the configured library for testing, since unit testing is not a part of that
methodology.

6201

3-22

Testing Status Section (System Test Column)

See hint 3 for a general discussion of test data tracking.

Total number of separate tests planned: Enter the number of tests to be conducted

during system testing.

Number of tests executed at least one time: Enter the number of tests that have

been executed for the first time, regardless of whether they passed, failed, or could not

be evaluated.

Number of tests passed: Enter the number of tests that have been executed and

evaluated as having passed successfully.

Testing Status Section (Acceptance Test Column)

See hint 3 for a general discussion of test data tracking.

Total number of separate tests planned: Enter the number of tests to be conducted

during acceptance testing.

Number of tests executed at least one time: See instructions under Testing Status

(System Test Column).

Number of tests passed: See instructions under Testing Status (System Test

Column).

Discrepancy Tracking Status Section

Total number of discrepancies reported: Enter the cumulative number of software

discrepancies reported since the start of system testing. A discrepancy is a reported oc-

currence of the software's performing incorrectly. Discrepancies are tracked internally

on each task by such mechanisms as problem reports (PRs), software trouble reports

(STRs), or SFRs. A discrepancy may or may not result in a change to the software, de-

pending on its resolution.

Total number of discrepancies resolved: Enter the cumulative number of software

discrepancies resolved since the start of system testing. A discrepancy is resolved when

its cause has been isolated and, if necessary, corrected. Generally, a discrepancy is re-

solved when the PR, STR, or SFR on which it was reported has been closed out.

Specification Modification Status Section

Total number of specification modifications received: Enter the cumulative

number of specification modifications that have been received from the analysts and

approved by the ATR for implementation.

Total number of specification modifications completed: Enter the number of re-

ceived specification modifications incorporated into the system.

6201

3-23

Requirements Questions Status Section

Total number of questions submitted to analysts: Enter the cumulative number of

requirements questions submitted to the analysts for clarification of requirements or
specifications.

Total number of questions answered by analysts: Enter the cumulative number

of submitted questions answered by the analysts.

No Changes Section

Check here if there are no changes: Check this box if the data supplied by the SEL

on the current preprinted form have not changed.

Helpful Hints

.

.

DSFs are to be submitted every other Friday. SEL personnel distribute the

preprinted forms with the most recently submitted data on the Wednesday
preceding the Friday on which DSFs are due. The data entered on the form

should reflect the most recent update the project leader has made to his/her

internal records of project status. The Friday date on the form does not mean

that a status measurement has to be taken on that date. For example, if the

project leader routinely updates internal records on Monday mornings, the
most recent Monday's update would be recorded on the DSF dated the fol-

lowing Friday. The project leader should not wait until the following Monday
and submit the form late. The important thing is to be consistent so that the

interval between reporting periods is uniform over the life cycle.

The preprinted DSF distributed by SEL personnel includes the date of the

data that appear on the form (see Figure 3-6). In most cases, this will be the

date of the Friday 2 weeks prior, when DSFs were last submitted. If, how-

ever, a form was submitted late, it will probably not have been processed by
the time the preprinted forms for update are generated. In this case, the data

on the form will be 4 weeks old and the data date on the form will so indicate.

Thus, it is important to take note of this date. A common cause of errors is

the project leader's thinking that no changes have occurred in a given meas-

ure over the preceding 2 weeks, but not realizing that the numbers printed
on the form represent data that are 4 weeks old.

. Test data should be measured at the lowest level of detail tracked. Test plans

usually contain a series of individual tests, each of which may involve multi-

ple runs. Each of these runs, in turn, may have multiple items to be evaluated.

For best visibility into testing progress, the SEL recommends that testing be

tracked on the test-item level, which, in the FDD environment, is generally

the case for acceptance testing. If the system test plan does not call out indi-

vidual items to be evaluated, testing should be tracked to the level of

6201

3 -24

.

individual tests or test runs. Tracking a small number of high-level tests or

test series provides little visibility into the progress of testing.

In the FDD environment, more than one separately monitored development

project may be generated from the same set of requirements and specifica-

tions. This most commonly occurs with the AGSS and telemetry simulator

for a given spacecraft. In these cases, requirements questions and specifica-

tion modifications may not be tracked separately for the two projects, since

they are written against the same requirements and specifications docu-

ments. When this happens, the SEL encourages project leaders to identify

the questions or specification modifications as to which systems they affect,

so that they may be tracked separately for DSF data collection. If this is not

possible, these data should be recorded on DSFs for one of the projects and

not for the other. This should be discussed at project startup, and a general

message should be entered to indicate that this combined tracking was per-

formed for the two projects in question.

3.2.1.3 SERVICES/PRODUCTS FORM (SPF)

General Information

The SPF (Figure 3-7) is completed by SEL data collection personnel to capture the

three'types of weekly rate data that the SEL monitors automatically: computer re-

sources, growth history, and services effort. Although development personnel are

never required to complete or submit this form, it is crucial that project leaders under-

stand the data recorded on it and their role in facilitating the collection of those data.

Computer resources data are collected and recorded by the SELweekly. On most com-

puters used by monitored projects, the SEL has access to accounting software that logs
the number of runs and the CPU hours used. The SEL defines a run to be a logon ses-

sion or a submitted batch job. On the FDF mainframe computers, the SEL tracks batch

jobs and interactive sessions separately. On the STL VAX computers, interactive ses-

sions and batch job submittals are combined to give a total number of runs.

Because projects often perform development activities on more than one computer,
the SEL collects CPU hours that have been normalized to the relative speed of a given

machine established to be representative of a particular class of machines. For exam-

ple, the STL VAX environment is a cluster of different members ofDEC's VAX family

of computers, including a VAX 11/780. Since projects developed in this environment
use more than one machine in the cluster, and since the different machines run at differ-

ent speeds, the accounting data for CPU hours are normalized to report all hours in

terms of VAX 11/780 equivalent hours. Similarly, in the FDF mainframe environment,

CPU hours are normalized to NAS 8040 equivalent hours.

The SEL does not record computer resources data for all projects. If a substantial por-

tion of the development work is performed on PCs or workstations to which the SEL

6201

3-25

SERVICES/PRODUCTS FORM

Project:

Date (Friday):

COMPUTER RESOURCES

Computer CPU Hours No. of Runs

GROWTH HISTORY

Components

Changes

Lines of Code

SERVICES EFFORT

Service

Tech Pubs

Secretary

Proj Mgmt

Other

Hours

For Librarian's Use Only

Number:

Date:

Entered by:.

Checked by:

NOVEMBER 1991

Figure 3-7. Services/Products Form

L_

6201

3-26

does not have access or for which accounting software is not available, computer

resources data will not be collected. This should be discussed at the project startup

meeting.

Growth history data are the second type of data collected on the SPE Each week from

the time the project establishes a library for placing developed code under configura-

tion control, the SEL measures the number of components in the library, the number of

SLOC in the library, and the number of changes that have been made to components

since they were first entered into the library.

To collect the growth history data, the SEL maintains library monitoring tools in both

the FDF and STL computing environments. The FDF tool computes statistics from

one or more PANVALETlibraries. The STL tool computes statistics from one or more

DEC Code Management System (CMS) libraries. It can also monitor a subset of a

library identified as belonging to a CMS "group." These tools count the number of

library members to obtain a component count; they sum the number of records in all of

the members to obtain a SLOC count; and they compute changes by summing the ver-

sion (level, generation) numbers of each library member and subtracting from this sum

the total number of library members. This gives the number of changes made to com-

ponents after they initiallywere moved into the library at version (level, generation) 1.

As with computer resources data, growth history data are not monitored for projects to
whose libraries the SEL does not have access.

Services effort is the effort expended by all personnelwho provide support services to a

given project but do not submit their hours to the SEL on a PRE Services effort hours

are extracted from timecard accounting systems, where these records are available to

the SEL from the organizations being monitored. On projects where such records are

not available, services effort is not recorded. This should be established at the project

startup meeting.

Services effort falls into four categories. Tech Pubs support includes hours spent by

publications personnel involved in the production of project documentation. This in-

cludes editors, word processors, proofreaders, graphics professionals, and reproduc-

tion personnel. Secretary support includes hours spent by secretaries providing direct

support services to the project. Proj Mgmt support includes all hours charged to the

project by management personnel at levels above the first-line manager (who reports

his/her management hours on PRFs). Other support includes hours charged to the

project that do not fall into any of the other three support categories. This usually in-

cludes project control personnel, indirect secretarial support, and facilities personnel.

The project leader's participation is essential in the collection of all three of the data

types collected on the SPE In collecting computer resources data, the project leader

must keep SEL data collectors informed as to what computers are being used and what

accounts should be monitored. Similarly, he/she must tell the SEL what library or

libraries need to be monitored to measure growth history data. If a partial CMS library

6201

3-27

on the VAX is to be monitored, the CMS group must also be specified. The project

leader must also ensure that the SEL has access to the libraries in read-only mode.

For services effort data, the project leader must provide the accounting cost collection

numbers to be monitored. Usually, a SEL-monitored project corresponds to a single

task number in the accounting system. There are, however, cases where part of a proj-

ect (several subsystems, perhaps) is developed under a separate task number. In these

cases, the accounting data from the two tasks must be combined to reflect the total ser-

vices effort data for the project. The opposite case also occurs; that is, more than one

separately monitored SEL project is developed under the same task number in the

accounting system. When this happens, the project leader must meet with the SEL

DBA to establish a proration algorithm for splitting the services effort hours among the

projects.

The project leader must also specify the names of management personnel who report

their management hours on PRFs, so that these hours are not double counted as Proj

Mgmt hours.

In addition, secretaries who provide direct support to the project must be identified so

that their hours, which should be recorded as Secretary support, may be distinguished

from those of other secretaries providing indirect support to the project (whose hours

should be recorded as Other support).

To help project leaders keep track of information being monitored automatically on

their tasks, the SEL distributes a monthly report, called the Data Collection Status Re-

port (Figure 3-8). Each project leader receives a page of the report for each project for

which he/she is responsible. This report lists the computers and accounts being moni-

tored for computer resources data, the libraries being monitored for growth history

data, and the task numbers being monitored for services effort data. In addition, it lists

the types of forms currently being submitted on the project and the programmers from

whom the SEL expects to receive effort forms (PRFs, CLPRFs, or WMEFs) on a

weekly basis.

Each month, it is the project leader's responsibility to review the data collection in-

formation for his/her projects and to return the report to the SEL DBAwith corrections

or an indication that the information is correct.

Line-by-Line Instructions

NOTE: These instructions are intended for SEL data collection personnel.

Proieet: Enter the acronym selected at project startup that uniquely identifies the proj-

ect being monitored.

Date (Friday): Enter the Friday date corresponding to the end of the week for which

data are being reported. Data are to be reported on this form for all work performed on

the project during the preceding Saturday-through-Friday period. Thus, the growth

6201

3 -28

November 1991

Please update any information that has changed. Place in the SEL forms bin or re-

turn to the SEL DBA, GreenTec II, Room (#) by COB (date). If you have any ques-

tions, contact me at 301-794-####.

Project: PROJECTX

Forms Being Collected: PRE COE CRE DSE PEF

Computer FDF mainframes

Account(s) Being Monitored: FBACC

Configured Library(s) Being Monitored:

FBPRO.PROJX.PAN

FBPRO.INC.PAN

FBPRO.PROJX.PANELS

Personnel Submitting Effort Forms:

Programmer 1 CSC

Programmer 2 CSC

Programmer 3 CSC

Service Resources Being Monitored: 99-111, 99-222

Check here if there are

no changes

Figure 3-8. Sample Page From Data Collection Status Report

6201

3 -29

historymonitoring toolsshouldbenanonFridays. Computer accountingreportsthat
SEL personnel are not responsible for generating may cover periods other than
Saturdaythrough Friday. If this isthecase,thefirst report run followingthe Fridaydate
on the form should be used.

Computer Resources

Computer: Enter the name of the computer (as it appears in coded form in the

COMPUTER table of the database) for which hours and runs are being recorded.

CPU hours: Enter the CPU hours used during the week (for the above computer) in
decimal form to the nearest tenth of an hour.

No. of runs: Enter the number of runs (an integer) executed during the week for the

above computer.

Growth History

Components: Enter the number of components in the system as reported by the SEL

growth history monitoring software for the week being recorded.

Changes: Enter the cumulative number of changes to the system as reported by the

SEL growth history monitoring software for the week being recorded.

Lines of code: Enter the number of lines of code in the system as reported by the SEL
growth history monitoring software for the week being recorded.

Services Effort

Tech pubs: Enter the number of hours charged to the project by technical publications

personnel during the week being recorded.

Secretary: Enter the number of hours charged to the project by secretarial personnel

directly supporting the project during the week being recorded.

Proj mgmt: Enter the number of hours charged to the project by project management

personnel during the week being recorded. Do not include hours for managers whose

hours have already been reported on a PRF for the week in question.

Other: Enter the number of hours charged to the project by all other support personnel

not included in the three previous categories during the week being recorded.

Helpful Hint

To obtain an accurate picture of system growth, the SEL requests that the follow-

ing guidelines be adhered to when performing configuration management of
source libraries.

Move new components into the library at version or level 1.

Move new components into the librarywhen they have been coded and tested

(and a COF has been completed), not when they have merely been designed.

3-30

6201

In other words, do not use the configured source library for storing PDL or

prologs. Instead, the use of a separate design library is recommended.

Each time a component is updated in the library, increase the version number

by one.

• Do not reset level numbers.

Do not delete history records produced by the configuration management

tool. This information is very important when the project is being closed out.

Do not maintain more than one copy of a given component even if there is

more than one configured library.

The last item is particularly important. Not only does it make good sense from a

configuration management point of view to maintain a component in only one

place, but if the same component appears in more than one library, it will be

counted twice when monitoring growth history. In addition, if the version num-

bers are different in the two libraries, the SEL has no way of knowing which to use

in counting changes. To prevent problems in collecting growth data, the project

leader must regularly communicate changes in the names of configured source li-

braries that the SEL should be monitoring.

A common problem in counting changes arises when updated modules are copied

from the developer's work library into the configured library at the version num-

ber of the component in the work library. If the developer updated the component

several times in the work library before determining that the change had been cor-

rectly implemented, the new version number would show that more than one

change had been made, which is clearly not the case. One way of avoiding the

problem is to use a configuration management tool, such as the CMS on the VAX.

If using PAN'VALET libraries on the IBM, the PANVALET Move/Copy function,

available under the Software Development Environment (SDE) (Reference 11),

will maintain level numbers correctly.

To provide a cross-check between developer-submitted data and SEL-monitored

data, the SEL produces and distributes to project leaders monthly graphs that

compare the number of COFs submitted and changed components appearing on

CRFs with the number of components and changed components, respectively,

measured by the SEL and recorded on SPFs.

A final note concerns implementation in builds where different configured li-

braries are used in different builds. When making the transition from one build to

the next, the new configured library should initially contain components at the ver-

sions at which they existed in the old configured library. When this occurs, the SEL

must be notified of the new library name and location. It will then be assumed that

no more updates will be made to the old configured library, and the SEL will not
continue to monitor it.

6201

3-31

3.2.2 Event Data

In contrast to rate data, which are collected with a predetermined periodic frequency,
event data are submitted to the SEL sporadically, when given events in the software

development process occur. Referring to Table 2-8, event-driven forms collected dur-

ing development include the CCF, COE CRF, PMF, and SIE The SIF, COE and CCF

are used to capture data on system elements. The CRF is used to capture change and

error data that characterize modifications made to the software products after they are

initially placed under configuration control. The PMF is used to record messages,
which may be submitted any time during the life cycle to capture auxiliary information

about a project. These five forms are discussed in the following sections.

3.2.2.1 SUBSYSTEM INFORMATION FORM (SIF)

General Information

The event that drives the completion of the initial SIF (Figure 3-9) is the Preliminary

Design Review (PDR). According to the SEL methodology, that is when a high-level

partitioning of the system into subsystems should have been accomplished. As the sys-
tem is further decomposed into its lowest level elements, or components, in detailed

design, it is essential to have a naming convention in place for referring to the compo-

nents. This naming convention should associate each component with a subsystem in

the design of the system. It is this aspect of the component-naming convention that the
SIF is intended to record.

As mentioned in the discussion of the PEF (Section 3.1.2), the term "subsystem" has a

slightly different interpretation in the context of the subsystem prefixes entered on the

SIF. Rather than referring strictly to the logical partitioning of the system present in the

high-level design, on the SIF a subsystem refers to a mutually exclusive partitioning of

the low-level components that make up the system. This allows each component of the

system to be a member of exactly one subsystem. The subsystem prefix is then used

when completing COFs (Section 3.2.2.2) to establish that membership relationship.

The distinction is subtle. In general, every logical subsystem present in the system de-

sign should appear on the SIF. In addition, however, there may be classes of compo-

nents that are used in more than one logical subsystem and should be assigned distinct

subsystem prefixes. FORTRAN COMMON blocks, for example, axe usually main-

tained as separate files in the FDD environment and are "included" into the appropri-

ate routines at compile time. The SEL recommends that these components be grouped
under a common subsystem prefix, such as CM. Even if a COMMON block is refer-

enced exclusively by routines belonging to a single logical subsystem, it should be

associated with the CM prefix. This simplifies the compilation of component- and sys-

tem-level size statistics at the end of the project. Other classes of FOR17GMN. compo-

nents that are usually grouped together are NAMELIST components, BLOCK DATA

components, and commonly referenced utility routines.

The examples noted in the preceding paragraph do not apply to Ada projects. The

object-oriented design approach used on Ada projects in the FDD environment does,

6201

3 -32

Name:

Project:

SUBSYSTEM INFORMATION FORM

Date:

Add New Subsystems

Subsystem Subsystem Subsystem
Prefix Name Function

Change Existing Subsystems
Action

Old Subsystem Prefix (R - Rename, New Subsystem Prefix
(Must exist in the database) D - Delete) (Must not exist in the database)

This form is to be completed by the time of the Preliminary Design Review (PDR). An update

must be submitted each time a new subsystem is defined thereafter. This form is also to be
used when a subsystem is renamed or deleted.

Subsystem Prefix: A prefix of 2 to 5 characters used to identify the subsystem when naming

Subsystem Name:

Subsystem Function:

For Liioranan'$ Use Only

Number:

Date:

Entered by:

Che_ee _:
NOVEMBER 1991

components
A descriptive name of up to 40 characters

Enter the most appropriate function code from the list of functions below:

USERINT:
DPDC:
REALTIME:
MATHCOMP:

GRAPH:
CPEXEC:
SYSSERV:

User Interface

Data Processing, Data Conversion
Real-time Control

MathematicaVComputational
Graphics and Special Device Support

Control Processing/Executive
System Services

Figure 3-9. Subsystem Information Form

6201

3-33

however, allow logical subsystemsto benestedwithin other logical subsystems.Ob-
viously,this typeof situationwouldnot provideamutually exclusivepartitioning of sys-
tem components. The rule of thumb is that, for SEL purposes,an Ada component
belongs to the lowest level subsystem of which it is a member.

It is important to note that, in addition to being the prefixes that will be used on COFs to

establish subsystem membership, the prefixes entered on the SIF should be used in the

names of components (files) in the project's configured library. At the end of develop-

ment, SEL personnel must reconcile the components in the configured librarywith the

names that have been submitted on COFs so that component-level statistics may be re-

corded. In addition, following this guideline will help developers to complete COFs

correctly, since they will not have to remember different naming conventions for file
names and SEL forms.

Completion of the SIF is the responsibility of the project leader. An initial SIF is ex-

pected at the time of PDR. Additional SIFs may be submitted any time thereafterwhen

subsystems are added to the design. They may also be submitted to delete a subsystem

that is no longer a part of the design or to rename a subsystem.

Line-by-Line Instructions

Name: Enter the SEL database name of the project leader completing the form. Usu-

ally, the database name consists of a first initial followed by a last name. Questions
about database names should be referred to the SEL DBA.

Project: Enter the acronym selected at project startup that uniquely identifies the

project being monitored.

Date: Enter the date on which the form is completed.

Add New Subsystems

Subsystem prefix: Enter the 2- to 5-character subsystem prefix used to identify the

subsystem in the SEL database. When naming system components, this prefixwiii be-

come the first characters of the component name to show the subsystem to which the

component belongs. When the file-naming convention involves separating the prefix

and component name with an underscore, the underscore is not considered part of the

prefix. Do not include the underscore when entering the prefix on SEL forms.

Subsystem name: Enter a descriptive name of up to 40 characters that specifies what

role the subsystem plays in the overall system design, e.g., data adjuster, telemetry proc-

essor, truth model, NAMELIST components.

Subsystem function: Select the one subsystem function from the list provided on the

form that best describes the type of processing performed by the subsystem. Sometimes

a subsystem may provide more than one of the functions listed. In such cases, the pre-

dominant function of the subsystem should be chosen. As an example, a user interface

3-34

6201

subsystem that interfaces with system services to put menus on a screen would have a

function of USERINT rather than SYSSERV. In other situations, two functions may

apply in which one function is more specific than the other. In this case, the more spe-

cific function should be chosen. For example, if a subsystem is implementing mathe-

matical algorithms to provide real-time control functions, REALTIME should be

chosen over MATHCOMP. See hint 3 for additional pointers.

Change Existing Subsystems

Old subsystem prefix: Enter the prefix of the subsystem to be renamed or deleted.

This prefix must already exist in the database (i.e., it must previously have been sub-

mitted on an SIF).

AeUon: Enter "R" to rename the subsystem prefix or "D" to delete it from the data-

base. (See hint 1 for restrictions on renaming and deleting subsystem prefixes.)

New subsystem prefix: Enter the new name of the prefix being renamed. This new

prefix must not already exist in the database.

Helpful Hints

. When deleting or renaming subsystems, be sure to consider what will happen

to any components that may belong to the' existing subsystem. The rename

option cannot be used to move all of the components under one subsystem

to another subsystem that already exists. This must be accomplished by re-

naming the individual components using the CCF (Section 3.2.2.3). Addi-

tionally, a subsystem cannot be deleted if there are components in the

database that belong to it. Those components must be either deleted or re-

named (via CCF) before the old subsystem can be deleted.

. If individual components will be reused by linking them to the system in ob-

ject form from RSL MTASS, or MSASS, prefixes for these reuse sources

must be provided. The RL prefix has been reserved to identify components

reused from the RSL. The prefixes MTASS and MSASS are reserved for

reuse from those two sources. COFs will be completed for individual com-

ponents linked in from any of these sources. An MTASS or MSASS prefix

need not be provided, however, if only complete subsystems are being re-

used, rather than individual components. This type of reuse does not require

the completion of COFs. It should, however, be noted at the project startup

meeting and confirmedwith SEL personnel at project completion so that size

statistics from those subsystems may be included in the final project size com-

putations.

. Questions sometimes arise about what subsystem function should be listed

for a prefix that does not correspond to a functional subsystem in the

high-level system design. The following guidelines for the examples of this

6201

3-35

type of subsystemdiscussedunder General Information will apply in most
cases:

FORTRAN COMMON block components:
FORTRAN NAMELIST components:
FORTRAN BLOCK DATA components:

DPDC
USERINT
DPDC

3.2.2.2 COMPONENT ORIGINATION FORM (COF)

General Information

The COF (Figure 3-10) is used to record information that characterizes each compo-

nent in the system at the time it initially becomes part of the system. It is completed by

the developer responsible for coding and unit testing the component. The developer

passes it on to the project leader or configuration manager so that configuration in-
formation may be recorded.

From a SEL data collection point of view, a software system at the lowest level is com-

posed of elementary pieces called components. A component, as viewed by the SEL, is

any piece of the system that is maintained in a separate file. Thus, a component does

not necessarily have to correspond to an executable module in the system's imple-
mentation language. For example, a FORTRAN COMMON block is considered a

component if it is maintained in its own file for the purpose of "including" it in other

components at compile time. Also, if a single file contains more than one subroutine,

procedure, or function, as in the case of nested procedures in Pascal and Ada, or multi-

ple entry points in a FORTRAN subroutine, for example, the file itself is considered a

component rather than each of the nested subroutines or procedures. This definition of

a component is to be used when completing COFs.

The event that drives the completion of a COF is the origination of a component. A

component is "originated" when it has been unit tested and is ready to be moved into

the project's configured source library. A COF may be completed earlier than the im-

plementation phase when the code is produced as part of the design effort (e.g., an Ada

package specification). However, it should not be completed to record the origination

of a component design (prolog, PDL) that is configured into a design library. The COF

is designed to be used by the project configuration manager as well as by the SEL.

When the component is physically transferred from the developer's library into the con-

figured library, the configuration manager adds the configuration date to the form.

After that, the component is considered to be under configuration control.

The conventions for identifying individual components in a system, as well as the sub-

system to which they belong, should have been discussed in the project startup meeting.

Before any COFs may be submitted, an SIF must be submitted to identify prefixes used

in the component-naming convention. A SEL component name consists of two parts: a

prefix of 2 to 5 characters that uniquely identifies the subsystem to which a component

belongs, and a name of up to 40 characters that identifies the component within the

6201

3-36

%

COMPONENT ORIGINATION FORM

Identification

Name:

Project:

Subsystem Prefix:

Component Name:

Date:

Configuration Management Information

Date entered into controlled library (supplied by configuration manager):

Library or directory containing developer's source file:

Member name:

Relative Difficulty of Developing Component

Please indicate your judgment by circling one of the numbers below.

Easy Medium Hard
1 2 3 4 5

Origin

If the component was modified or derived from a different project, please indicate the
approximate amount of change and from wriere it was acquired; if it was coded new (from
detailed design) indicate NEW.

NEW
Extensively modified (more than 25% of Number:

statements changed) oa=:
Slightly modified Enm,_dW:

Old (unchanged) CheOw_by:

If not new, what project or library is it from?
Component or member name:

For Librarian's Use Orgy

Type of Component (Check, one only)

INCLUDE file (e.g., COMMON)
Control language (e.g., JCL, DCL, CLIST)
ALC (assembler code)
FORTRAN source
Pascal source
C source
NAMELIST or parameter list
Display identification (e.g., GESS, FDAF)
Menu definition or help
Reference data files

BLOCK DATA file

Acla subprogram specification
Ada subprogram 0ody
Ada package specification
Ada package body
Aria task body
Aclageneric instantialJon
Ada generic specification
Aclageneric body
Other

Purpose of Executable Component

For executable code, please identify the major purpose or purposes of this component.
(Check all that apply).

I/O processing Control module
Algorithmic/computational Interface to operating system
Data transfer Process abstraction

Logic/decision Data abstraction

NOVEMBER 1991

Figure 3-10. Component Origination Form

6201

3-37

subsystem. The combination of subsystem prefix and component name must uniquely

identify each component within the system. Thus, a system may have two components

with the same 40-character name as long as they belong to different subsystems and

have different subsystem prefixes. Ideally, the names chosen for the physical imple-

mentation of components (i.e., file names, library members) should be identical to the

SEL component names (subsystem prefix concatenated with a component name). As

discussed in the SIF instructions, at project completion the SEL reconciles the compo-

nent names entered into the database (via COFs) with the names of components that

appear in the project's configured source library. If these names are not the same, the

project leader must provide a key showing the translation of SEL names to physical im-
plementation names.

Line-by-Line Instructions

Identification

Name: Enter the SEL database name of the programmer completing the form. Usual-

ly, the database name consists of a first initial followed by a last name. Questions about
database names should be referred to the SEL DBA.

Project: Enter the acronym selected at project startup that uniquely identifies the

project being monitored. Check with the project leader if unsure of the correct name.

Date: Enter the date on which the form is completed.

Subsystem prefix: Enter the prefix identifying the subsystem to which the component

belongs. The prefix entered must have previously been entered into the database by
means of an SIF.

Component name: Enter the name of the component without preceding it with its

subsystem prefix. The component name may be up to 40 characters. The combination

of subsystem prefix and component name must uniquely identify a single component in
the system.

Configuration Management Information

Date entered into configured library: Enter the date on which the component is

physically transferred from the developer's library to the project's configured source

library. This date is usually entered by the configuration manager.

Library or directory containing developer's source files: Enter the name of the

library (e.g., PANVALET library on FDF mainframes, CMS library on the STL VAX

cluster) or directory (e.g., VAX/VMS directory) in which the source code for the unit-

tested module resides. This field is to be completed by the developer for use by the proj-
ect configuration manager.

Member name: Enter the name of the component as it appears in the above library or

directory (e.g., PANVALI_.T member name, CMS element name, VMS file name).

6201

3-38

This field is also to be completed by the developer for use by the project configuration

manager.

Relative Difficulty of Developing Component

Enter a subjective judgment of how difficult the component was to develop. This is not

necessarily the same as the complexity of the component. For example, when modify-

ing a reused component to meet system requirements, a component that performs a rel-

atively simple function may be difficult to modify if it is not clearly written and well

documented. The converse may also occur. A reused component may perform a very

complicated function yet may be easy to modify if it is well written. For a verbatim re-

used component, the difficulty lies in understanding the component well enough to in-

corporate it into the system.

Origin

Check one of the listed options to describe the source of the component. If it was newly

developed from the detailed design, check "new." If it was reused from another source,

consider the amount of modification that was needed to make it meet system require-

ments and check one of the last three options. If the component is not new, be sure to

complete the following two fields.

If not new, what project or library is it from?: Enter the name of either a SEL data-

base project or a specific library from which the reused component was taken.

Component or member name: If a SEL database project was listed in response to

the preceding question, enter the SEL component name (including the subsystem pre-

fix) of that component in the source SEL project. Ifa librarywas listed, enter the mem-

ber name of the component in the library.

Type of Component

Check the one type from the options listed that best describes the component. Follow

the general rule of choosing the most specific type category that applies. For example,

although a FORTRAN COMMON block is FORTRAN source code, "INCLUDE file"

should be checked rather than "FORTRAN source." Control language components

(JCL DCL, CLISTs, etc.) that build the system (compile from source, link, etc.) axe

usually not stored in the project's configured source library, and COFs for these types of

procedures are not submitted. If, however, a control language module is employed

when the system is executing, that module is considered a configured part of the system,

and a COF should be submitted for it. The "display identification" category is used for

components written in a display language, such as the Graphics Executive Support Sys-

tem (GESS) (Reference 12) or the Flight Dynamics Application Framework (FDAF)

(Reference 13), both of which are institutional software packages used in the FDF envi-

ronment. Components written in vendor-supplied display languages, such as Interac-

tive System Productivity Facility (ISPF) (Reference 14) panels also fall under this

6201

3-39

category. The "menu definition or help files" categoryis usedfor ordinary data files
that areusedbythe applicationsoftwareto definedisplaysor provideonline help. The
"reference datafiles" arefilesusedbythe systemthatprovidefunctionality andarenot
input files thatwill bevariedfrom run to runwhenthesystemisusedoperationally. An

example would be a file of information used by a simulator to translate and process

encoded ground commands. Such a file would be considered part of the configured sys-

tem (it could have been implemented in source code as an internal table) and a COF

identifying it as a "reference data file" should be submitted. The remaining categories
require no further clarification.

Purpose of Executable Component

Complete this portion of the form only if the type of component checked in the previous

item indicates that the component contains executable code or ff the component is writ-

ten in Ada. This section should not be completed, for example, if the component is a

COMMON, a NAMELIST, a BLOCK DATA subprogram, or a reference data file. If

the component is executable, check all of the purposes that describe the functions per-

formed by the component. Descriptions of the purposes follow.

I/Oprocessing:. A major function of the component is to read from or write to

disk files, tapes, display screens, or other peripheral devices. Examples in-

clude components that access an attitude history file and GESS or FDAF dis-

play screens.

Algorithmic�computational: A major function of the component is to perform

computations that implement a mathematical algorithm specified in the sys-

tem requirements or functional specifications. Examples include compo-
nents that model a spacecraft sensor or propagate spacecraft attitude.

Data transfer:. A major function of the component is to manipulate data,

transferring them to and from internal data structures. Examples include

components that pack or unpack telemetry records or transfer data from one
data structure to another.

Logic�decision: A major function of the component is to make decisions that

affect the paths that are executed in the system. Examples include compo-

nents that route messages to various destinations based on evaluating an ad-

dress or that determine what type of orbit propagator to invoke, based on a

user-supplied flag.

Control module: A major function of the component is to control the overall

process flow of the system or of a subsystem. Examples include driver com-

ponents that control the order in which major functions are invoked or com-

ponents that schedule the execution of discrete events in a spacecraft
simulator.

Interface to operating system: A major function of the component is to provide

access to functionality supplied by the host operating system. Examples
e

6201

3-40

include componentsthat provide accessto VAX/VMS systemservices,MVS
direct accessI/O functions,or the systemclock.

Process abstraction: A major function of the component is to provide a tem-

plate for a given process, the detailed processing steps of which must be sup-

plied for it to do useful work. The most common examples of process

abstractions are implemented via Ada generics. A process abstraction for

modeling ephemeris, for example, would be a template for computing

ephemeris in which the object for which ephemerides are being computed

and the method for computing them are supplied as parameters. An Ada

generic that provides a template for a generalized process would be con-

sidered a "process abstraction." The instantiation of the generic to imple-

ment a specific process, however, would not be.

Data abstraction: A major function of the component is to encapsulate a com-

posite data type and the operations that may be performed on it. A typical

example would be an Ada package used to define a data structure, such as a

stack, and all the operations used to access it. In this case, the package speci-

fication and body would be considered to have a purpose of "data abstrac-

tion," but individual routines separate from the body would not.

Helpful Hints

. One of the most common mistakes made in completing COFs arises from not

understanding the distinction between the subsystem prefix and the compo-
nent name. Because the name of the library member is usually a concatena-

tion of these two identifiers and because the library name is often referred

to as the component name by developers, there is a tendency to duplicate the

prefix when writing the component name on the COE The following exam-

pies should clarify this.

Example 1

Library name:

COF subsystem prefix:

COF component name:

UTMATMPY

UT

MATMPY (not UTMATMPY)

Example 2

Library name:

COF subsystem prefix:

COF component name:

SHEM_SPACECRAFT_BODY.ADA
SHEM

SPACECRAFT BODY

The first example is a typical PANVALET library member name, where the

prefix is simply the first two characters of the member name. The second ex-

ample is a typical VAX CMS library element name. Note that, since longer

names are permitted, the convention is to separate the prefix from the

6201

3-41

component name with an underscore. The underscore, however, is not

entered on the COF, either as part of the prefix or as part of the name. Note

also that the file extension (.ADA) included in the library element name is

not included when writing the component name on the COE

. The one exception to hint I comes when reusing individual components from

either MTASS or MSASS. In this case, the reserved prefix MTASS or MSASS

is entered as the subsystem prefix, and the entire library member name (in-

cluding what would normally be considered the subsystem prefix) is entered

in the component name field on the COE

3.2.2.3 COMPONENT CHANGE FORM (CCF)

General Information

Occasionally a component is no longer needed and is deleted from a project's config-

ured library. If this happens, the project leader submits a CCF (Figure 3-11) to have

the component deleted from the database. A CCF can also be used to correct compo-

nent names that have been entered into the database incorrectly. Similarly, when com-

ponents in the project's configured library are renamed, the CCF is used to rename the

components in the database.

Line-by-Line Instructions

Name: Enter the SEL database name of the project leader submitting the form.

Project: Enter the acronym selected at project startup that uniquely identifies the

project being monitored.

Date: Enter the date on which the form is submitted.

Old component: Enter the name of the component to be changed as it currently exists

in the database. Include both the subsystem prefix and the 40-character component

name. When the fde-naming convention involves separating the prefix and component

name with an underscore, the underscore is not considered part of the prefix. Do not

include the underscore when writing the prefix on the SEL form.

Action: Enter "R" to rename the component or "D" to delete it from the database.

New component: Enter the new name of the renamed component. Include both the

subsystem prefix and the 40-character component name. When the file-naming con-

vention involves separating the prefix and component name with an underscore, the

underscore is not considered part of the prefix. Do not include the underscore when

writing the prefix on the SEL form. A name should be entered only if the action
selected is "R."

6201

3-42

COMPONENT CHANGE FORM

Name:

Project: Date:

This form is to be used when components in the project controlled source libcary are deleted or
renamed.

OId Component

(l_t exist intheclatabase)

Ac'don

R - Rename
D - Delete

New Component

Prefix Name Prefix Name

NOVEMBER 1991

Figure 3-11. Component Change Form

6201

3 -43

Helpful Hints

°

*

In contrast to renaming a subsystem via an SIF, where the new subsystem

name entered on the form must not already exist in the database, a compo-

nent may IAe renamed to the name of an existing database component. This

may be useful when two components are combined into a single component

that retains the name of one of the original components. The COF data

associated with the "new" component name will be retained, and the COF

data associated with the component being renamed will be deleted. Nearly

the same effect may be achieved by simply deleting the old component that

is being subsumed into the new one. This is not recommended, however,

since any changes made to the old component and reported on CRFs (Sec-

tion 3.2.2.4) would no longer be associated with any valid component in the

database, when the code that was changed now belongs to the new compo-

nent and changes made to that code should reference that component.

The rename option of the CCF can be used when components are moved

from one subsystem to another, simply by changing only the prefix when

entering the new component name. The new subsystem prefix, however,
must already exist in the database. The CCF cannot be used to create a new

prefix.

3.2.2.4 CHANGE REPORT FORM (CRF)

General Information

Once system components have been placed under configuration control, i.e., moved

into the project's configured source library after having been successfully unit tested

and identified to the SEL on a COF, the SEL collects information on all subsequent

changes to the system that cause those components to be modified and replaced in the

configured source library. Each such change is documented by submitting a CRF (Fig-
ure 3-12).

The event triggering the submission of a CRF is the implementation of a logical change

to the system. A logical change may be made for any number of reasons, ranging from

requirements and specifications changes to error corrections. The implementation of a

logical change may require any number of individual components to be modified, yet

that single logical change is documented on a single CRF. Thus, the number of CRFs

submitted will not correspond one-to-one with the number of changes made to the proj-
ect's configured source library.

The key to understanding a logical change is that it has a single, well-defined purpose.

For example, if the implementation of a requirements change requires 10 components

to be modified, the changes to those 10 components constitute a single logical change

and a single CRF is completed. If, however, while changing those i0 components, a

developer makes additional changes in one of them to correct an outstanding error that

6201

3-44

Name:

Project:

CHANGE REPORT FORM

Approved by:

Date:

Section A- Identification

Describe me cttange: (What, wt'ty,how)

Effect: What components are ct'_xje¢l?

Prelix _ Name i V_

; i

! t

'Attacttlist If more space is needed)

Location of developer's source files

Need for ct_rcje determined on:
Change completed (incorporated into system):

Effort: What acldltlon= components
examlne¢l In determining

what cttange was needecl?

Effortin pem_n time to Lsomtettte ¢t_ange(or error):
Effortin persontJme to Impk_mentthe cringe (or correction):

Ch=:_h_e i'd'Bnge_
,4dJcomponems(/fso,compJe¢e
_ onrc,var_ _e)

[]

I hnlou I hr/1 day lt3 days >3 days

Section B- All Ctlanges

Y N Effects of Change
[] r7 wl _ ¢han__ ¢om_ toorm=ndo_/on_

cornel? (Must mam_ Effoa m Sec_on A)

[] _ [_lyou IooKldlnyo_oomgononl?(Mu=t
rnmah E_ _ So¢=k_ A)

ex_Ic_Iy _ Imq_laIy (e.g,,,C:C_MON b4oc_) _oor

Section C- For Error

Source of Error
(Check one)

[] Requnmen _"

1-1Fur-.-=o_,=o=ac=_

[] O._n
[]Co=,

cormc_onsone/
Qass of Error

(Check most applicable)"

[] Im

(e41.,I_w o_ceelm_ Ircem¢_

[] Interlace (Inmm_]
(_ ¢ommtmClt_e)

I __ (modt_ to_tnmal oommunk:mlon)
;_ o=*-(v=_ = ==u==_)

(Lg., _ in mmll_ecnceumn)

"lf t_o m ocmaiv m_c_Imn, ct'm_ u_

oltl highs' on fltl I1¢.

Chamctert_cs
(Check Y or N for nit)

Y N

For Ubnm=n'= Um O_f

Num_:
D_tto:

Entm_ by:
Checkod by:. cO

NOVEMBER 1991

Figure 3-12. Change Report Form (1 of 2)

6201

3-45

CHANGE REPORT FORM
Ada Project Additional Information

1. Che_ whichAda feature(s) v._= Involved In this change (Checkall thatapply)

[] Datalyplng [] Programsr_ure andpac_g_g

[] Sub_r=m,= [] Tasking

[] Excepeom [] Systm-dependentfeaturo=
[] c.,atmc= [] other,pwa_=p=_/

(e.g_ I/O, Ada statem=nta)

2. F=rm error in_lvingAda_t=:

a. Da_ Itm comldl_ documentation or _ Language

ref=rm¢= manual expmin the feature c_

b. Which of the following is most Ixue? (Check one)

[] Understood feature= separately but no(interac_on

[] Undemtood features, but did nol apply correctly

[] Did not unden=tand feature= fully

[] Confused feature with feature in another language

c, Which ol the following resources provided,the information

needed to commt the en'or? (Check all that apply)

[] Class not= [] Ow. memory

[] Aclareferencen_nual [] Sorneone not on team

[] Ownpro_3ctt_,,._mb_ [] ou_.

d. Which tools,ifany,aidedin_ detectlonorcordon ofthisenact (Checkallthatapply)

[] symboecde=Jgger

[] L_gt_e-=a_ve ed_or

[] CMS

(Y/N)

[] Soume Code Analyz=,

[] P&CA (Performance and Coverage Analyz=¢)

[] DEC test manager

O omar,=pec_

3. Provide any other information about the interaction of Ada and this change

that you feel might aid in evalua=ing the change and using Aria

NOVEMBER 19@I

Figure 3-12. Change Report Form (2 of 2)

6201

3-46

had beendiscoveredearlier during testing, that error correction constitutesasecond
logicalchange.A secondCRF must becompleted for that change,eventhough thein-
dividual componentinvolvedmay havebeenremovedfrom thelibrary, modified, and
replacedonly one time.

The CRF is completedby the developer implementing the changeonce all affected
componentshavebeenmodifiedandretested.Theform is thenintendedto beusedasa
configuration managementtool for identifying to the project configuration manager
thecomponentsthatwereupdated,their versionnumbers,andtheir location. Thecon-
figuration managerthenmakesthenecessarylibrary updatesandnoteson theform the
date that the changeis configured into the system.The form alsocontainsafield for
approvalof thechange.This isgenerallyusedbysomeonewho reviewsboth thetechni-
cal correctnessof the changeand the correctnessof the information suppliedon the

form. This approver is often the project leader.

Line-by-Line Instructions

Name: Enter the SEL database name of the developer completing the form. Usually,

the database name consists of a first initial followed by a last name. Questions about
database names should be referred to the SEL DBA.

Proiect: Enter the acronym selected at project startup that uniquely identifies the

project being monitored. Check with the project leader if unsure of the correct name.

Approved by: This field is provided for use by a reviewer who has verified the techni-

cal correctness of the change and the accuracy of the information supplied on the form.

This reviewer is often the project leader, but may be a team leader, a peer developer, or

the configuration manager.

Date: Enter the date on which the form is completed.

Section A m Identification

Describe the change: Explain what change is being made, why the change is neces-

sary, and how the change is being made. Provide sufficient detail so that people other

than project staff can understand the change. The description should not be on the vari-

able name level, but it should be sufficiently abstract so that the function of the changed

code can be determined. For example, use "the input buffer was cleared," rather than

"array BUFF was set to zero." Where applicable, reference underlying documentation

that initiated the change, such as an STR number or the number of a specification modi-
fication.

Effect: Enter the names of all components that were modified and must be replaced in

the configured library. The names listed must consist of the subsystem prefix followed

by a component name of up to 40 characters. As on the COE underscores connecting a

prefix and a component name in the file-naming convention are not considered a part

of either. All components listed must already have been entered into the database by

6201

3-47

COFs. The versionnumber, if available, should be supplied to assist the configuration

manager. This should be the cortfigu.red libraryversion number of the component when

it was checked out of the library for modifications, not the version number of the com-

ponent in the developer's local directory or library, or the anticipated version number

at which the component should be replaced in the library.

Although the form has room for only a limited number of components, all components

affected by the change must be listed. This may be done by attaching a separate page to

the CRF. The prefix, component name, and version number of each component must
be clearly listed on the attachment.

Effort: Enter the names of all additional components that were examined, but not

changed themselves, while determining the exact nature of the change. This list should

not overlap the list of components actually changed. Version numbers need not be in-
cluded in this list.

Location of developer's source files: Enter the name of the library (e.g.,
PANVALET library for FDF mainfl'ames, directory or CMS library for STL VAX com-
puters) in which the source code for the changed modules resides. This field is intended

for use by the project configuration manager.

Need for change determined on: Enter the date on which the need for the change
was first detected. For example, if the change involves an error correction, enter the

date on which the symptoms of the error first appeared'or were reported on an STR.

For implementing a specifications change, enter the date on which the specifications

modification was received. For a planned enhancement, the original configuration
date of the affected components may be used.

Change completed: Enter the date on which the changed components are physically

updated in the project's configured source library. This field is intended to be com-

pleted by the configuration manager.

Check here if change involves Ada components: Put a check in this box if any of

the modified components listed is written in Ada. (lfso, complete the questions on the

reverse side of the form.) (See Figure 3-12 (2 of 2).)

Effort in person time to isolate the change: Put a check in the box that indicates

how long it took to determine precisely what change was needed. This includes the ef-

fort required for understanding the change or finding the cause of the error, locating

where the change is to be made, and determining that all effects of the change are ac-

counted for. Note that this effort is to be reported in staff-days, not calendar days. If a

team off'we developers spent a full day isolating an error, the "> 3 days" box should be
checked.

Effort in person time to implement the change: Put a check in the box that indi-

cates how long it took to implement the change. This includes design changes, code

modification, regression testing, and updates to documentation. Note again that effort
is to be reported in staff-days.

6201

3-48

_j

Section B m All Changes

Type of change: Check the one change type from the list of change types that best

describes the change. If more than one change type applies, that may be a clue that

more than one logical change was made, in which case another CRF is required. There

are, however, cases in which some confusion might arise. Generally, the first type listed

that applies is the type that should be checked. Refer to the definitions below for clarifi-
cation.

Error correction: The change was made to correct an error that was

introduced earlier in the life cycle. This includes errors in the requirements,

the functional specifications, the design, or the code, as well as errors

introduced as the result of previous changes. If this change type is checked,

Section C of the CRF must also be completed.

Planned enhancement: Code was inserted into a program stub that was ini-

tially created and configured as a dummy for testing purposes, or a planned

capability was added to an already existing component. The key word is

planned. The changed components must have initially been configured with

the knowledge that they would later be modified. Another example is the

addition of default values that were not defined when the component was

originally developed.

Implementation of requirements change: A requirement or functional specifi-

cation was added, modified, or deleted. Usually, this type of change is the

direct result of a specification modification. However, if the specification

modification was written to comet an error in the requirements or specifica-

tions, the change should be recorded as an "error correction."

Improvement of clarity, maintainability, or documentation: Changes were

made to improve code quality, such as improving indentation or resequenc-

ing labels for readability, or adding or updating documentation or correcting

grammatical errors in it. Nothing was technically wrong with the software,

but changes were made to help future maintainers understand it better.

Note, however, that improving the clarity of a display screen, help message,

or any other end-user-oriented information should be classified as an "im-

provement of user services."

Improvement of user services: This type of change is intended to improve the

functionality, ease of use, or clarity of the system from the end-user's point of

view. Do not check this category if the improvement was a "planned en-

hancement" or if it was required by a change in the requirements or specifica-
tions.

InsertionMeletion of debug code: Changes were made to the program text spe-

cifically to provide additional information during test runs so that errors can

8201

3-49

be isolated. Also check this category when such changes are removed from
the program text.

Optimization of time�space�accuracy: A localized adjustment was made to the

program to reduce its execution time or memory or disk space requirements,

or to obtain results of greater numerical accuracy by "tuning" the algorithms

being used or converting to variables that allow greater precision, ff the

change resulted from a specification modification that introduced a new per-

formance or accuracy requirement or made an existing one more stringent,

the change is an "implementation of requirements change," and that cate-
gory should be checked rather than this one.

Adaptation to environment change: This category should be checked when im-

plementing an unplanned change in response to a change that is outside of

the system boundary. This includes a change in hardware, operating system,

or compiler. This type should not be used if, for example, the changes were
planned in order to move the system from its development environment to its

target environment. It should also not be used if the change was initiated by a
requirements change.

Other. This category should be checked only if none of the preceding catego-

ries applies. Briefly describe the change type in the space below the checklist
on the form. . •

Effects of change: For each of the three questions, check the appropriate answer

("yes" or "no"). Note that the answers to the first two questions must agree with the

information supplied in the Effect and Effort items in Section A. Thus, if only one com-

ponent is listed under Effect, the answer to the first question must be "yes." Similarly, if

there are any components listed under Effort, the answer to the second question must

be "yes." The third question should be answered "no" only if all of the changes made
were localized to the components in which they were made. The intent is to record

whether component interfaces were involved in the change or potentially affected by

the change. Thus, for example, a change that affects values in a parameter list,

FORTRAN COMMON block, or state data in an Ada package would require that this

box be checked '`yes," even if no other components had to be changed as a result.

Section C u For Error Corrections Only

This section must be completed if the type of change indicated in Section B is "error
correction."

Source of error: Check the one box that best indicates in which phase of the develop-
ment life cycle the error was introduced.

Errors that originated in the requirements or functional specifications will nor-
mally be initiated by a specification modification. These would include such

6201

3-50

errors asan error in one of the equationsusedto specifyan algorithm to be
implementedor the omissionof a data itemfrom a list of valuesrequired to
beoutput on a displayor report.

• Design errors are introduced in the process of transforming re quirements and

specifications into detailed (component-level) design. An example would be

leaving a piece of required information out of a parameter list or omitting a

step in a computation when generating PDL.

• Code errors are those errors that occur when transforming the detailed de-

sign to code, such as mistyping a variable name, incorrectly coding an assign-

ment statement, or incorrectly coding the exit criteria for a loop.

• Finally, errors resulting from aprevious change are those that were not in the

system until some other change was implemented (in which case the imple-

menter of the previous change did not consider all of its possible effects, or

the change was simply implemented incorrectly).

Class of error:. Check the one box that best classifies the error, l.f the error seems to fit

into more than one class, check the first applicable class.

• Initialization: The error results from an incorrectly initialized variable, a fail-

ure to reinitialize a variable, or because a necessary initialization was mis-

sing. Failure to initialize or reinitialize a data structure properly upon a

component's entry/exit would be considered an initialization error.

• Logic/controlstructure (e.g., flow of control incorrect): The error stems from

an incorrect Boolean decision in a control structure. Errors causing an incor-

rect path to be taken in a component are considered logic/control structure
errors.

• Interface (internal) (module-to-module communication): This is an error of

data exchange within the system. Included in this category are parameter

(calling sequence) errors, COMMON block errors, and errors in state data.

An error in initializing COMMON block variables is considered an interface

error and not an "initialization" error, because the COMMON block is used

by the module but is not part of its local environment.

• Interface (external) (module to external communication): This is an error of

data exchange between some module in the system and some external entity,

such as system services, files, printers, or institutional software packages,

e.g., GESS and FDAF.

• Data (value or structure) (e.g., wrong variable used): A data error is any error

in the use of a variable or any error resulting from the incorrect use of a data

structure. Examples of data errors are the use of incorrect subscripts for an

array, the use of the wrong variable in an equation, the use of the wrong unit

of measurement, or the inclusion of an incorrect declaration of a variable

local to the component.

6201

3-51

Computational (e.g., error in math expression): This is an error in which an

incorrect expression is computed, that is, a computation erroneously evalu-
ates a variable's value. For example, a "+" was used where a "-" should

have been used. This category does not include an error in which the wrong
variable was used in the calculation; that is a "data" error.

Characteristics: All three of these questions must be answered. They are to be inter-

preted as follows:

Omission error (e.g., somethingwas left out): Check"yes" whenever the error

was the result of missing code (even one statement or a part of one state-

ment). The code may be missing because of an omission in a previous phase,

such as a missing equation in the functional specification.

Commission error (e.g., something incorrect was included): Check "yes"

whenever the error resulted from wrong code as opposed to missing code. If

the error included both incorrect code and missing code, check "yes" for
both. There are no errors for which "no" is checked on both of these

questions.

NOTE: The above two questions are often misinterpreted. If something

incorrect is replaced with something correct, this is an error of

commission only. For example, if "X-Y" is replaced with

"X + Y," the fact that the minus sign was incorrectly included and

the plus sign was left out does not imply that the error was one of

both commission and omission. Something incorrect was in-

cluded and had to be changed, not added. Hence, it is an error of

commission only. This is a subtle, but important, distinction.

Error was created by transcription (clerical): Check "yes" only if the error was

actually caused by a transcription mistake. This includes keying mistakes,

spelling errors, etc.

Ada Project Additional Information (Reverse side of form)

This portion of the form must be completed if the box on the front side of the form is

checked to indicate that the change affected components written in Ada.

Ouestion 1: Should be answeredfor all changes involving Ada components. Select the

category (or categories) that most closely characterize the change. A more detailed
description of the categories follows:

Data typing: Includes predefined and user-defined scalar types, variables,

constants and actual parameters; subtypes and derived types; array types,

variables, and constants; array slices; named and positional aggregates;

string variables and constants; record types, variables, and constants; dis-

criminated and variant records; and dynamic memory allocation, i.e., data

structures using pointers.

8201

3-52

• Subprograms: Includes function and procedure calls, "return" statements,

named and default parameters, recursive subprogram calls, overloading of

subprogram names, and user-defined operators (+,-,*,/).

• Exceptions: Includes predefined and user-defined exceptions, raising excep-

tions, "raise" statements, and handling exceptions.

• Generics: Includes declarations and instantiations of generic packages, type

parameters, and subprogram parameters.

• Program structure and packaging: Includes package specifications; package

bodies; package initialization; changes due to use of state information in

package bodies; scope and visibility of subprogram formal parameters; local

subprogram variables; variables declared in "block" statements; private and

limited private types; generic and standard package implementations or

instantiations of queues, linked lists, and stacks; changes, additions or dele-

tions of "with" clauses; removal of inappropriate "use" statements; block

statements; nesting of blocks, subprograms, packages, or tasks within other

blocks, subprograms, packages, or tasks; and restructuring of software com-

ponents (nesting vs. library units, subunits).

• Tasking: Includes entry calls, task buffers, task priority, task types and ob-

jects, task activation, task termination, family of entries, and selective wait.

• System-dependent features: Includes "delay" statements, objects of type

TIME and DURATION, use of CALENDAR, exception "time_error," ad-

dress clauses, length clauses, enumeration representation clauses, record

representation clauses and alignment clauses, compiler directives (prag-

mas), importing of foreign code, predefined items and other environment-

dependent features, and Ada low-level features.

• Other:. Includes I/O features (Text_IO and instantiations of Integer_IO,

Float_IO, Enumeration_IO, Sequential._IO, Direct_IO). If I/O was the

cause of the change and the change is the result of an error, either "interface

(internal)" or "interface (external)" should be checked under Class of Error

on side one. Other also includes changes to Ada assignment and control

statements and use of the "rename" statement. In this case, the class of error

("logic/control structure," "computational") should reflect this choice. If this

category is selected, the feature involved must be supplied.

Question 2: Should be answered only if the type of change checked in Section B on the
front of the form is "error correction."

• Question 2a should be answered"no" only if the compiler documentation or

language reference manual was consulted when writing the code originally

and led to a misinterpretation of the use of a particular Ada feature. It should

be answered "yes" in all other cases, including those in which the documenta-
tion was not consulted.

6201

3-53

Question2bshouldbeansweredregardlessof whether the errorwasdirectly
related to an Ada feature. Check the most applicable statement.

Questions 2c and 2d are intended to capture the tools and resources used in

isolating and correcting the error. Check as many items as apply.

Question 3: This question should be answered for all changes involving Ada compo-
nents.

Helpful Hints

° Perhaps the single most common error in completing the CRF occurs when

identifying the source of an error in Section C. Logic says that because one

is having to change code to correct the error, the "code" box is the one that

should be checked. What is really intended is to determine when in the life

eyrie the error was introduced. The "code" box should only be checked if the

error was made while transforming the detailed design (prolog and PDL)

into code. If the PDL itself was wrong, the source of the error is "design."

If the code correctly implements an incorrect requirement or specification,
the appropriate one of those two boxes should be checked. Errors introduced

by a previous change are a bit more difficult t_identify, but revision histories

in component prologs should provide enough information to allow that de-
termination to be made.

. When using the CRF as a configuration management tool, the configuration

manager must be aware that components may appear on more than one CRF

when being promoted from one version to the next, since they may be in-
volved in more than one logical change being implemented at the same time.

Those logical changes, however, should have been assigned to a single

developer so that not more than one team member is working on a given com-

ponent at the same time. It is suggested that, when possible, the team mem-

ber submit the CRFs for multiple logical changes affecting the same

component or components as a package, perhaps clipped together, to simpli-

f-y the configuration manager's job of determining precisely what compo-

nents need to be replaced in the configured source library.

. A question that often arises is "What if the logical change involves adding a

component to the system or deleting a component from the system?" New

components resulting from the implementation of a change should be docu-

mented on COFs (Section 3.2.2.2) and should not be listed on the CRE

Similarly, deleted components should be identified to the SEL via a CCF

(Section 3.2.2.3) and should not be listed on the CRF.

. Another common question is "If the error involves Ada components, but was

truly language independent (i.e., had nothing to do with the use of Ada), how

should Question 2b on the back of the form be answered?" In this case, there

6201

3-54

°

was no misunderstanding of Ada features, nor of their interactions, so the

second response, "Understood features, but did not apply correctly," should

be checked, even for something as simple as a misspelled variable name or

incorrect operator in an assignment statement.

Changes made to components linked to the system from external reuse

sources (RSL, MTASS, MSASS) should not be reported on CRFs by the reus-

ing project.

3.2.2.5 PROJECT MESSAGES FORM (PMF)

General Information

The PMF (Figure 3-13) is completed by SEL data collection personnel to record gen-

eral information about a given project or the data that have been collected for it. It is

not filled out directly by developers. The developers may, if they wish, submit to SEL

personnel specific messages that explain some aspect of the project or its data collec-

tion. More commonly, however, a data collection team member will draft and enter

messages based on conversations and other interaction with project personnel.

Line-by-Line Instructions

Name: Enter the name of the data collection team member completing the form.

Project: Enter the acronym selected at project startup that uniquely identifies the proj-

ect being monitored.

Date: Enter the date on which the form is completed.

Messages: Enter free format text that describes the information being documented

about the project.

Helpful Hint

To make these messages more readable when they are retrieved from the database

or output in reports, they should be organized for readability. Devoting separate

paragraphs to each major point is one technique. A buUeted list of major points is
another.

3.3 PROJECT COMPLETION

When SEL-monitored development projects are complete, and the software has been

delivered to maintenance and operations (end of cleanup phase), the project data

undergo a process of validation and verification referred to as"closeout." This process

involves a final quality assurance of all data collected on the project, reconciliation of

the components stored in the SEL database against those in the delivered source library

of the project, and computation of final size and resource use statistics for the project..

Once the SEL has determined the final statistics for a project, the project data are

6201

3-55

Name:

Project:

PROJECT MESSAGES FORM

Date:

Messages:

m

o
NOVEMBER T99!

Figure 3-13• Project Messages Form

6201

3-56

provided to the project leader for review. SEL personnel record the final statistics on a

PCSF, which they work with the project leader to validate and complete. They also col-

lect an SEE which contains the consensus opinion of the managers involved in the proj-

ect on a list of subjective project attributes. Finally, any last annotations about the

methodologies employed on the project, unusual or unresolved anomalies in the proj-

ect's data, and information about the data collection activities on the project that might

help users of the data to interpret them more accurately are recorded on a PMF (Sec-

tion 3.2.2.5).

One of the first steps listed above refers to reconciling components in the database with

those in the project's configured source library. This is a necessary precursor to com-

puting final project size statistics broken down by code origin, which is done from

component-level size statistics since the component is the only system element for

which origin information is recorded (on COFs). Thus, the goal of this step is to map

every component for which the SEL received a COF to a source file in the delivered

system and vice versa. This process often involves requesting COFs from the project

leader for library components not found in the database, verifying and deleting COFs

for components that are no longer part of the system, and mapping database (COF)

names to file names in cases where naming conventions were not (or could not be) fol-
lowed and the two names are different.

Individual components reused by linking in object code from separately maintained

libraries (RSL, MTASS, MSASS) should also have database names reconciled with or

mapped to the file names in the source libraries for these reuse sources.

Once SEL personnel have matched database names to file names and the locations of

the files in source code libraries, they can then run the source code through line and

statement counting tools to compute component-level size statistics. Line counts are

computed for every component of the system. Comment counts are computed for every

FORTRAN or Ada component. This includes INCLUDE files. Statements and

executable statements are computed for every FORTRAN component that contains a

complete, compilable FO_ element (subroutine, function, BLOCK DATA).

Statements are also counted for every Ada component. The FORTRAN statements

and executable statements are counted, with INCLUDE files expanded, by running

them through the FORTRAN Static Source Code Analyzer Program (SAP) (Refer-

ence 15). SAP also produces a number of other metrics, and the reports it generates are

stored in hard copy form by SEL personnel for future reference and access by research-

ers. Figure 3-14 is a sample SAP output report.

Once component-level statistics have been entered into the database, project comple-

tion statistics may be summed. These are transferred by SEL personnel to a PCSE At

this point, a member of the data collection team meets with the project leader and asks

him/her to verify the project completion statistics and to supply any that might be mis-

sing. The data collector and the project leader then examine the project data byviewing

them in various graphical representations. If any anomalies are observed, these are dis-

cussed, and possible causes are noted for documentation as project messages. At this

6201

3-57

interview, theproject leadersuppliesanyinformation abouttheproject, its life cycle,or
the methodologiesemployed that may help researchersto understandthe data col-
lected. The datacollectordocumentsthe resultsof this interviewandentersthem into
the databasebymeansof a PMF.

While the abovestepsareprogressing,the data collection teamalso asksthe GSFC
contactfor theproject to completeanSEE When thishasbeencompletedandentered
and all of the abovestepsarealsocomplete,the project isconsideredclosedout, and
the datamaybeusedfor research.

3.3.1 Project Completion Statistics Form (PCSF)

General Information

The PCSF (Figure 3-15) is used to record the actual project schedule and project-level

size and resource use statistics at project completion. It is completed and entered one

time only. To facilitate its collection, SEL personnel complete the form as far as pos-

sible by summing lower level data to obtain project-level totals and recording those

totals on the form. They then ask the project leader to verify the data and provide miss-

ing information. Usually, the only field that the project leader must supply is the Pages

of Documentation field, which cannot be summed up from lower level data collected
during development.

The line-by-line instructions that follow outline how SEL personnel compute the values

they enter in each field and what the project leader should consider in verifying or up-
dating the information.

Line-by-Line Instructions

Name: Enter the SEL database name of the proiect leader who verifies and updates

the form. Usually, the database name consists of a first initial followed by a last name.
Questions about database names should be referred to the SEL DBA.

SOURCE _NALYZER PROGRAM V3 GLOBAL STATIST|CS SUMMARY FILE LUN 8 4HFCJCP :4GE T

.;TI. 13 (SK2: (S,.UA TA. SAP] SAMPI.E_;/T. SAP/-MO

MODULE DiRECTORy

HODULE SOURCE EXEC _-EXC STATMENT INFORNATiGM COUNT HALSTEAO =.t..t C_4PLEX_T2TES t.t_tt PAGE _UNSER OF

NAME LINES C.J4TS STNT STMTS ASGN [/O CNTL STRU _NCL OTHER OPTR OPNO CYCLO _EL JSER1 _SER2 _O. ERRS '_ARM

I 4NFCMP SU 159 88 43 32 19 5 18 5 0 5 238 202 _8 355.5 2.0 O.0 0 3 0

2 gLDOAT SU 109 70 20 21 9] 3 0 O 2 122 105 6 1_.0 2._ 0.0 0 _

3 BLDHED SU 612 196 426 Z_7 210 2 214 0 O 0 2078 2254 _ 4709.0 _.3 0.0 0 0 g

@L_MOX SU 15| _, 33 35 7 10 16 _ 0 5 I_I 154 11 201.5 Z.0 O.0 _ _ 3

0MPNOX _U S5 42 _ Z2 2 3 3 _ 0 0 52 _2 3 IO5.5 _.g 0.3 0 0 ?

6 PRANF SU 847 18_ 212 385 :3 141 71 3 0 I 1695 lq_O r2 1954.0 _.0 0.0 3 3

7 WTHIST SU 76_ 311 161 Z_6 68 15 _T _ 0 6 IZ4_ 1713 69 2587.5 _.0 0.0 3 0 0

WTINIT SU 95 61 15 Z1 5 _ 6 2 O 2 80 30 _ t3_.5 ;.'3 3.3 0 3 0

Figure 3-14. Sample SAP Printout (1 of 3)

6201

3-58

SOURCE ANALYZER PROGRAM V] GLOBAL STATISTICS S_W4ART FILE

STL_O [SK2: [SunATA. SAP1SAMPLE_WT. SAP/-P_3

=*_te _LCEAL SUM/4ARY *_.t.

LUN 8 _TINIT _AGE

GLOBAL TOTAL _UNRER NUMBER _UMEER NUMBER SOURCE COOE COMMENT

_OOULE _OULES MAINS _UgRourf_ES ;C_CTf_S _LOC_AFAS LINES LIMES LINES

B O 3 _ 0 3021 1985 1016

_OULE LINES PER P4ODULE PROLOGUE

C(_J4EHTING TOTAL COOE COMNEHT LENGTH

STATISTICS 847 MAX. cI)6] HAX.]11 MAX. 190 MAX.

377.6 AVG. 2_8.1 AVG. 129.5 AVG. _.6 AVG.

ENTRY POINTS SUBR. CALLS

MOOULE 0 TOTAL 168 TOTAL

COMMUNICATION PER MODULE PER NOOULE

3TATIST!_S 0 MAX 141 _AX

0.0 AVG 21.0 AVG

EXECUTABLE

CNT. PCT. STATEMENT

STATEMEHT _18 _6._ EXECUTABLE

CLASS]ZO 16.2 ASSIGNMENT

COLJHTERS 403 20.4 CONTROL

_5 Z.3 STRUCTURED

183 9.3 I/O

0 ASF DEF. 320 ASS[GNMENr

C_ENT LIMES

EMBEOOED BLANK

121 _AX. 38 MAX.

_2.9 AVG. 19.1 AVG.

FUNCT. ;EF. EXTERNAL EXTERNALLY

2 TOTAL LULLS _EFINED

PER MODULE OEF[NED REFERENCES

1 MAX 141 MAX 0 MAX

0.3 AVG 21.5 AVG 0.0 _VG

ASF ASF _RO. L_ST LNGTH

_EF_NITIO_S REFERENCES IN REFERENCES

PER MOOULE PER NCOULE TO SUBR/FUNCT.

0 NAH O HAX _] MAX

0.0 AVO 0.0 AVO 2.7 AVG

HON'EXECUTABLE

CHT. PCT. STATEMEHT CNT. ;CT. STATEMENT

1059 5],b WON-EXECUTABLE 3 O.O _JU4ELIST

16 0.8 SUBPROGRAM "I _._ DATA

_09 20.7 SPECIFICATION 3 O.O ASF DEFINED

_01 20.3 ?vPE SPECIF. '58 8.5 FORMAT

ACCEPT 0 ASSIGN 0 AT

MISCELLANEOUS

CNT. PCT. STaTEmEnT

3 0.0 INCL_OE

21 1.1 OTHER

0 _ACKSPACE

0 _LOCXOATA 0 _TTE 16_ CALL 112 CHARACTER 0 CLOSE _ COMMON

0 COMPLEX 21 CONTINUE !I 0ATA 0 DEBUG 0 OECOOE 0 0EFIMEFILE

0 DELETE 0 DIMENSION _ DISPLAY 3 OOUBLECOMP 0 OOUBLEPREC 3 DO_NILE

12 00 O EJECT '2 ELSE|F 7 ELSE 0 ENCnnE 0 EHDO0

O ENOOEBUG 0 EMOFILE Z5 EHDIF _ E_O 0 ENTRY 400 EQUIVALENC

O EXTERNAL 0 F[NO 168 FORMAT O FUNCTION 88 GOTO 0 ,IF

127 IF 0 IMPLICit _ ;NCLIJOE O INOUIRE _6 INTEGER 0 _NTRINSIC

5 LOGICAL O MANEL[ST _ OPEN _ PAR_UqETER O PAUSE O PRINT

0 =ROGRAM 1 READ 2_ REAL 8 RETURN 2 _EWINO _ REWRITE

0 SAVE 0 STOP _ _UBROUTINE 3 THEN 0 TRACEOFF] TRACEON

0 TYPE 0 WAIT IE0 WRITE 0 UNOECnnEO 0 UNLOC£ 3 VIRTUAL

IF STMTS 8LOC_IF

CONTROL PER MODULE qESTING

STATEMENT MAX. AVG. MAX. AVG.

BREAICDO_N 72 15.9 3 1,9

:,OTO STMT$ DO STMTS

=ER V_OULE _ER NODULE

uAX. AVG. _AX. AVG.

70 11.0 _ 1.5

ASSIGNMENT

STATEMENT VARIABLES PER ASSIGNMENT

SREAI_D(_M 1.9 AVG. 7 MAX.

O0 LCXBP STMTS PER

NESTING DEPTH _0 LOOP

MAX. AVG, MAX. _vE.

Z 1.Z _5 5.9

VARIABLES _ANEO

SPECIFICATION PER MOOULE

STATEMENT MAX. AVG.

BREAI_)OWN _61 140.0

OPERATORS PER STATEMENT SUBSCRIPT COMPLEXITY

0.4 AVG. 4 MAX, 6 MAX. 1.1 AVG.

VARIABLES REFERENCED EQUIVALEHCEO DIMENSIONS

PER H_OULE NAMES PER MODULE PER ARRAY

E_EC. STNTS C_eqO.qS MAX. _VG. _X. _VG.

AX. AVG. MAX, AVG. 32 T25.3 Z 1.0

2_2 66.5 _ 29.4

CHARACTERS

PER VARIABLE

_AX. AVG.

o S.6

Figure 3-14. Sample SAP Printout (2 of 3)

6201

3-59

SOURCE ANALYZER PROGRAN V3 _LOBAL STATISTICS SUI'_IAR¥ FILE LUN 8 _TINIT

$TL_0 ! SK2 : ($1JDATA. SAP] SAMPLE i_T. SAP/- MO

PAGE 3

_ALSTEAO ANALYSIS

COHPLEXITY 3PERATORS OPERANDS LEVEL SEL CYCLOMATIC QUALITY PREDICTED PREDICTED

ANALYSIS TOTAL UNIQUE TOTAL UNIQUE PROGRAM LANGUAGE COMPLEXITY COMPLEXITY I_DEX PROGRAN LENGTH EFFORT REOUIRED

TOTAL 569_e. 178 6510 1331 3.131 11.059 10222.50 258 650.0_ 11_1.0 12954r,6224.0

NAX. Z0_ 41 2_4 412 0°045 5.980 _709.00 _ _.c_&.7 3_8.0 119550_0.0

NEAN 711.8 22.3 813.a I_.G 3.016 1.382 12T_'.81 32.25 81.259 14_.125 1619327'_3.000

STO. OEV. t,'_'_._ 9.J 906.0 17"2.5 3.014 I._? 15_.29 30.58 4.22_ 1554.032 39125912.000

Figure 3-14. Sample SAP Printout (3 of 3)

Project: Enter the acronym selected at project startup that uniquely identifies the proj-
ect being monitored.

Date: Enter the date on which the form is completed by SEL personnel and submitted

to the project leader for review and update.

Phase Dates

The phase dates entered by SEL personnel are those that appear on the most recent

PEF submitted by the project leader. These dates must be Saturdays. (See the discus-

sion of phase dates under the PEF instructions in Section 3.1.2.) The project end date

should be the date on which all system products (source libraries and documents) are

delivered to the organization that will be performing the maintenance and operations

phase. Note that a maintenance phase start date should not be supplied at this time.

Staff Resource Statistics

The fields in this area of the form are computed from previously collected data as de-

freed in the descriptions that follow. The project leader should check these totals

against l_is/her most recent estimates for effort expenditures and against effort expendi-

tures as recorded on organizational accounting records. Such comparisons will ob-

viously not result in direct matches, but should be used to provide a "sanity check" on

the final effort numbers being recorded. A large disparity might point to a problem in

the data collected on the project. This should be investigated by SEL personnel and an
annotation should be made via a PMF if a problem is found.

Technical and management hours: The total entered by SEL personnel is the sum

of the activity hours recorded on all PRFs, plus the sum of all project management
hours recorded weekly on SPFs.

Services hours: The total entered by SEL personnel is the sum of the support service

personnel activity hours recorded on SPFs (support services personnel include secre-

taries, technical publications personnel, couriers, project control, etc.).

B201

3-60

Name:

Project:

PROJECT COMPLETION STATISTICS FORM

Date:

Phase Dates (Saturdays)

Phase Start Date

Requirements Definition

Design

Implementation

System Test

Acceptance Test

Cleanup

Maintenance

Project End

Staff Resource Statistics

Technical and

Management Hours

Services Hours

Computer Resource Statistics

Computer CPU hours No. of runs

Project Size Statistics

General Parameters

Number of subsystems

Number of components

Number of changes

Pages of documentation

Source Unes of Code

Total

New

Slightly Modified

Extensively Modified

Old

Comments

Executable Modules

Total

New

Slightly Modified

Extensively Modified

Old

Executable Statements

Total

New

Slightly Modified

Extensively Modified

Old

Statements

Total

New

S_ghtly Modified

Extensively Modified

Old

Note: All of the values on this form are to be actual values at

the completion of the projecL The values entered by
hand by SEL personnel reflect the data collected by
the SEL during the course of the project. Update
these aocording to project records and supply values
for aJlblank fields.

ForIJorarmn_iUr_

Number:,

Dato:

Enteredby:.

Chec_clby:

NOVEMBER Iggl

Figure 3-15. Project Completion Statistics Form

6201

3-61

Computer Resource Statistics

The fields in this area of the form are computed from previously collected data as de-

fined in the descriptions that follow. It is not expected that project leaders will have

kept their own records of computer use. Thus, novalidation of the data in these fields is

necessary. The project leader should, however, verify that there is an entry for each

computer used on the project for which he/she provided account identifiers to SEL per-
sonnel for monitoring.

Computer: The computer names entered by SEL personnel are the abbreviated SEL

CPU names for each SEL-monitored computer used on the project.

CPU hours: For each CPU name listed, the total entered by SEL personnel is the sum

of CPU hours used during the life cycle of the project as measured by system accounting
software and recorded weekly by SEL personnel on SPFs.

Number of runs: For each CPU name listed, the total entered by SEL personnel is the

sum of runs made on that computer as measured by system accounting software and

recorded weekly by SEL personnel on SPFs. See the SPF instructions (Section 3.2.1.3)
for the definition of a computer run.

Project Size Statistics

The remainder of the PEF is used to record measures that characterize the size of the

final delivered product. Several of the subcategories under project size classify meas-

ures as new, slightly modified, extensively modified, or old. The Total field is always the

sum of these four categories. SEL personnel compute these classifications by summing

component-level size statistics with the components grouped by their "final" origin.

The components that fall into each of these "final" origin categories are as follows:

New: All components for which the Origin field on the COF was checked
"new"

Slightly modified: All components forwhich the Origin field on the COF was

checked "slightly modified" plus all components forwhich the Origin field on

the COFwas checked "old unchanged," but which subsequently appeared as
changed components on one or more CRFs

Extensively modified: All components for which the Origin field on the COF

was checked "extensively modified"

Old: All components for which the Origin field on the COFwas checked "old

unchanged" minus those that subsequently appeared as changed compo-
nents on one or more CRFs

Generally, the project leader does not keep records of size statistics broken down into

these categories. It is not expected that he/she will be able to verify the breakdown

6201

3-62

againstproject records. He/sheshould,however,haverecordsof total countsfor these
sizestatisticsand an ideaof the levelof reuseachieved. Theseshouldbeusedto per-
form a"sanitycheck" on thedata,andanyapparentdiscrepanciesshouldbecommuni-
catedto SEL personnel for investigation.

Project Size Statistics--General Parameters

The fields in this area of the form contain high-level project size statistics. All but the

last field (Pages of Documentation) will have been completed by SEL personnel. A

description of these four fields follows.

Number of subsystems: The number entered by SEL personnel is the one that ap-

pears on the most recent PEF submitted by the project leader. This number should be

verified to represent the number of logical subsystems present in the design of the final

delivered system. This will not necessarily match the number of subsystem prefixes that

have been identified on SIFs. (See the discussion of subsystems under the PEF instruc-

tions in Section 3.1.2.)

Number of components: The number entered by SEL personnel is the total number

of COFs received on the project (after they have been reconciled with the project's con-

figured libraries) plus the sum of the number of components present in each of the sub-

systems reused in its entirety from a generic reuse source (such as MTASS or MSASS).

Since these countswere to have been factored into the estimates supplied on PEFs, this

number should be fairly close to the number of components estimated on the most re-

cently submitted PEE

Number of changes: The number entered by SEL personnel is the actual number of

logical changes made to the system as reported to the SEL on CRFs. (See the discussion

of the CRF in Section 3.2.2.4 for a definition of what constitutes a "change.") If the

project leader has kept separate records of system changes, this number should be veri-

fied against those records.

Pages of documentation: Sum and enter the total page count for the following types

of documents produced on the project. Note that this field is not completed by SEL

personnel. The project leader must supply this information.

Software development/management plans (including any separate quality

assurance (QA) or configuration management (CM) plans)

• User's guides (finals only)

• System descriptions (finals only)

Design book/detailed design notebook or document produced at Critical De-

sign Review (CDR)

• Test plans (integration, build, and system test---not acceptance test)

• Prologs and PDL (count 1 page per system component)

6201

3 -63

Project Size Statistics--Source Lines of Code

As defined in the instructions for the PEF, SLOC is a count of carriage returns, or card

images. It includes code, comments, blank lines, and data. SEL personnel count SLOC

for every component for which a COF has been submitted, regardless of component

type. These counts are made without expanding INCLUDE files. Refer to general
instructions for project size statistics for a description of how size statistics are classified

by origin.

Comments: This number is a count of the source lines that begin with a comment iden-

tifier. Only FORTRAN and Ada source code components are included in this count.

As with SLOC, INCLUDE flies are not expanded when counting comments. Blank
lines are not counted as comments.

Project Size StatisticsmExecutable Modules

These measures are computed by counting the number of COFs on which a Component

Purpose was recorded. (See Section 3.2.2.2.) Recall that a purpose is to be supplied for

all Ada components and for components of any other type that contain executable code.

Refer to general instructions for project size statistics for a description of how size sta-

tistics are classified by origin.

Project Size Statistics---Executable Statements

These measures are computed for FORTRAN source code components only. They are

generated by running the source code through the SAP program with INCLUDE files

expanded. The FORTRAN statements that are classified as executable are identified

in the KEYWORDS.SAP file, an input file to the SAP program. (See Reference 15 for

more detailed information on SAP and the classification of FORTRAN executable

statements.) Refer to general instructions for project size statistics for a description of
how size statistics are classified by origin.

.

Project Size Statistics--Statements

These measures are computed for FORTRAN and Ada source code components only.

The FORTRAN statements are counted by running the source code through the SAP

program with INCLUDE files expanded. The Ada statements are counted by running

the source code through a statement counting tool maintained by SEL personnel that

counts terminating semicolons (i.e., excluding those occurring in parameter lists). Re-

fer to general instructions for project size statistics for a description of how size statistics
are classified by origin.

Helpful Hints

. Note that the final actual schedule, resource use statistics, and number of

changes characterize the process and the resources used to produce the

6201

3-64

portion of the final product actually developed by the development team.

The size statistics, however, characterize the entire final delivered product,

including certain application software reused by linking it in from external

sources. This distinction causes some project leaders to question the data re-

corded on the form when projects achieve a high level of reuse. A relatively

low expenditure of staff resources, for example, to develop a very large sys-

tem might give the impression that a much higher productivity was achieved

than that recorded by the project leader in his/her own monitoring of the

project. These are, however, the data that the SELwould like to record. Size

statistics must reflect the entire application so that comparisons with similar

applications will be valid.

. Remember that the number of subsystems recorded on this form should in-

clude any subsystems reused in their entirety from application-specific reuse

sources, such as MTASS and MSASS. It is important to make sure that SEL

personnel are aware of these subsystems so that they may factor them into

total size statistics and record project messages documenting the fact that

they were reused.

. Although the executable statements and statements measures may seem in-

tuitively to be a subset of the SLOC measures, they differ, as has been pointed
out, in that FORTRAN executable statements and statements are counted

with INCLUDE flies expanded. Thus, some of the developed source code

is counted multiple times in taking these measures. The rationale behind this

is that the SLOC measure is intended to capture raw system size, whereas the

statement counts are intended to capture the volume of system code that

must be processed by a language processor or translator. Traditionally in the

SEL, executable statements was the measure that captured this. With the
introduction of Ada in the FDD environment, a definition of Ada executable

statements that would yield a size measure suitable for the comparison of

FORTRAN and Ada projects was not readily apparent. Thus, the measure

of total statements was introduced for both FORTRAN and Ada projects.

Executable statements are still counted for FORTRAN projects so that they

may be compared with older FORTRAN projects in the data base.

3.3.2 Subjective Evaluation Form (SEF)

General Information

To complement the objective statistics generated in the closeout process, the SEL re-

quests that the project's GSFC contact, or AT'R, complete an SEF (Figure 3-16). The

ATR is asked to solicit input from all of the project leaders (GSFC and contractor tech-

nical leads and line managers) and determine a composite answer for each of the ques-

tions on the SEE This information provides overall subjective opinions that

characterize the problem, process, environment, resources, and product.

6201

3 -65

SUBJECTIVE EVALUATION FORM

Nan's:

Project: Date:

Indicate response oy circling the corresponOing numeric ranking.

I. PROBLEM CHARACTERISTICS

1 Assess the intrinsic difficulty or coml_exity of the oroDlem that was addressed by the software development.

t 2 3 4 5

Easy Average Difficult

2. How tight were schedule constraints on protect?

1 2 3 4 5

Loose Average _ght

3. How stable were requirements over development Derrod?

! 2 3 4 5

Loose Average High

4. Assess the overall ciuadi_ of the reQutrements speclticat]on documents, InC_ljdlrlg ;heir ctar::v accuracy,

consistency, and completeness.

1 2 3 4 5

Low Average High

5. How extensive were Oocumsntation rectuirements?

1 2 3 4 5

LOW "Average High

6. HOW rigorous were formal review requirements?

I 2 3 4 5

Low Average High

II. PERSONNEL CHARACTERISTICS: TECHNICAL STAFF

7. Assess overall Quality and ai:)ility of development team.

; 2 3 4

Low Average High

8. HOW would you characterize the development team's experience and familiarity wlm the ado.cation area of
the proiect ?

1 2 3 4 5

Low Average High

9. Assess the development team's exqoenence and famdiarity w_th the clevetooment enwronment (hardware

and support sorrwareL

1 2 3 4 5

Low Average High

1 0. How stable was the composition of the development team over the ciuratlon of the Drojec:/

1 2 3 4 5

Loose Average High

FOR LIBRARIAN'S USE ONLY

NumOer: Entered by:

Oats: Ch eckeO by:
._._.

NOVEMBER 1991

Figure 3-16. Subj_tNe Evaluation Form (1 of 3)

3 -66

6201

SUBJECTIVE EVALUATION FORM

Ill.PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT

t 1. Assess the overall parlormance ot prolect management.
1 2 3 .L 5

Low Average High

12. Asses= prolect managemenrs experience and famdiarity vath the application.

1 2 3 4 5

Low Average High

13. How stal_le was proiect management during the oroiect?

I 2 3 4. 5

Low Average High

14. What degree of disciplinecl project planning was useO?
t 2 3 .t 5

Low Average High

t 5. To what degree were project plans followecl 9

: 2 3 .: 5

Low Average Hicjn

IV. PROCESS CHARACTERISTICS

t 6. To wllat extent clid the development team use modern programming pract=ces _POL, too-down

development, structured programming, and COde reaoingJ 9

1 2 3 4 5

LOW Average High

17. To what extent did the development team usa well-definecl or disciplined procedures to record

speaficatJon moctificattons, requzrements cluest=ons and answers, and interface agreements?
_. 2 3 4 5

Low Average High

:8. To what extent did the development team use a wail-definecl or disclplinecl recu_rements analysis

methodology 9
1 2 3 4 5

Low Average High

19. To what extent aid the development team usa a wed-defined or disciplined cles_gn methodology?

1 2 3 4 5

Low Average High

20. To what extent did the development team use a wetl-defineO or disciplined testzng methodology?

1 2 3 4 5

Low Average High

IV. PROCESS CHARACTERISTICS

21. What software tools were used by the development team? Chect_ all that apply from the list that follows

anti _lentJfy any other tools that were used but are not_ listed.

[] Comoder

[] lJnKer

[] Editor

[] Grapmc c_solay budder

[] Requirements language processor

r-] Structured analys=s support tool

[] POL processor

[]ISP¢
[] SAP

[] CAT

[--]PANVALET

[] Test coverage tool

[] Interface cnecKer (RXVPe0, etc.)

[] Language-sensitive editor

[] SymOolic dePugger

[] Configurauon Management Tool (CMS, etc.}

[] Others (identify by name anO function)

22. To what extent did the development team prepare and follow test plans?

I 2 3 4, 5

Low Average High

Figure 3-16. Subjective Evaluation Form (2 of 3)

6201

3-67

SUBJECTIVE; EVALUATION FORM

IV. PROCESS CHARACTERISTICS (CONTD)

23. To what extent aid the develooment team usa well-defined and discic;ined oua_rv assurance _rocedures

(rev=ews. ,nspectlons. and walkthroughs)?
: 2 3 4 5

Low Average High

24. To what extent did development Team use well-defined or discipfinad configuration management
proceOures ?

2 3 4 5

Low Average High

V. ENVIRONMENT CHARACTERISTICS

25. How would you ¢narac_anze me development team's degree or access to the deveiooment system?
1 2 3 4 5

Low Average High

26. What was the ratio ot 1orogrammere to tarrr, nals?
1 2 3 4 5

8:1 4:1 2:1 1:1 1:2

27. To wnat :agree was the develoDment team constr_uned by the size of main memory or direct-access

stor,_? ?,,aflaDle on tr,_ dev'=*o_m,=nt _y_tem?
2 3 4 5

Low Average High

2S. Assess :he system resDonse time: were the turna,'ound times axpermnced by me team satisfactory _n
light ot :t':.esize and nature ol the Jobs?

; 2 3 4 5

PGot Average Very Good

29. How state was the hardware and system suDl:x3rt software'(including language processors) during me
project _

1 2 3 4 5

Low Average High

33. Assess :he effectiveness ot the software Idols.

: 2 3 4 5

Low Average High

VI, PRODUCT CHARACTERISTICS

31. To what degree odes me delivered software provide the capabilities sDecdied in :r_e reaulremenTs'_

: 2 3 4 5

Low Avurage High

32. Assess the quality of the delivered software procluct.

2 3 4 5

Low Average High

33. Assess me quality of the design that is 0resent in the software product.

2 3 4 5

Low Average High

34 Assess me quality and comoleteness of the delivered system documentation.
I 2 3 4 5

Low Averse High

35. To what degree were software Oroducts delivered on time?
1, 2 3 4 5

Low Average High

.3.5. Assess smoothness or relative ease ot acceptance testing.
2 3 4 5

Low Average High

Figure 3-16. Subjective Evaluation Form (3 of 3)

6201

3 -68

Line-by-Line Instructions

Name: Enter the SEL database name of the ATR responsible for completing the form.

Usually, the database name consists of a first initial followed by a last name. Questions
about database names should be referred to the SEL DBA.

Project: Enter the acronym selected at project startup that uniquely identifies the proj-

ect being monitored.

Date: Enter the date on which the form is completed.

General Instructions

The questions on this form are serf-explanatory. Therefore, no further line-by-line

instructions are provided. The form asks for retrospective subjective opinions in six

major areas of the software development effort. These areas are problem characteris-

tics, personnel characteristics (technical staff), personnel characteristics (technical

management), process characteristics, environment characteristics, and product char-

acteristics. The 36 questions are grouped into these six categories. With the exception

of question 21, all questions require the circling of a single numeric response indicating

a subjective opinion. Question 21 requires an "X" or check mark in the box by each tool

listed that was used on the project.

Helpful Hint

The technique for collecting a composite opinion is left to the discretion of the

ATR. One suggestion is to have each technical lead or line manager complete a

copy of the form, compile the results, and try to resolve outlying rankings by dis-

cussing them with the individuals who gave them. Another option is to hold a

meeting of the individuals involved and come to a consensus in that setting.

6201

3 -69

SECTION 4--DATA COLLECTION IN MAINTENANCE

This section presents detailed procedures for collecting SEL data during the mainte-

nance and operations phase of the software life cycle. It begins with a discussion of data

collection activities during the transition to maintenance, which may involve a change

in the organization responsible for the system. This is followed by an overview of data

collection activities during maintenance, which includes an outline of the maintenance

procedures followed on projects in the GSFC FDD environment. Lastly, detailed

instructions for completing the SEL data collection forms submitted during mainte-

nance are presented in the same format as those presented in Section 3 (i.e., back-

ground information, line-by-line instructions, and helpful hints).

4.1 TRANSITION TO MAINTENANCE

When the products of a SEL-monitored development project are delivered for opera-

tional use, the SEL initiates the collection of maintenance data. Often, the organiza-

tion responsible for maintenance is different from the organization responsible for

development. Thus, as in project startup, the first thing the SEL must do is establish
lines of communication with the maintenance team and obtain some basic information

about the project.

SEL data collection personnel schedule a meeting with the maintenance team to dis-

cuss maintenance data collection activities. This meeting should be scheduled as soon

as maintenance work begins on the system. This generally does not start until the sys-

tem has been accepted. There may, however, be some overlap with the collection of

development data, especially if the development team continues to work on final sys-

tem documentation and the project history report after the actual software is delivered.

The main purposes of this meeting are (1) to acquaint the maintainers with the SEL

data collection process and their role in that process, (2) to establish naming conven-

tions and identify team members who have not previously submitted SEL forms and

whose names will have to be entered into the database, and (3) to give the data collec-

tors an understanding of the maintenance process being followed and any peculiarities

that may have an impact on the accuracy or completeness of the data collected. An ex-

ample of such a peculiarity would be a maintenance effort that was split among two or

more organizations, with only one of whom the SEL has made arrangements to collect
data. In such a case, the data collected will be incomplete, and SEL personnel will note

this in the form of project messages so that researchers will understand the limitations
of the data.

SEL personnel use the PSF (Section 3.1.1) to document the information gathered at the

maintenance startup meeting. They complete the header information, contacts, forms

to be collected, general notes, and personnel names portions of that form. As in devel-

opment, it is very important to establish a single point of contact, or project leader, with

6201

4-1

whom SEL personnel will communicate on data collection issues. In addition, if the

project was not monitored by the SEL during development or is being maintained

under a different name from that used during development, the project full name, lan-

guage, and computer system fields are completed. Filling in the computer account and

task number fields is not necessary, since the SEL does not collect computer resources

data or services effort data during maintenance.

Two additional pieces of information the SEL must obtain at the startup meeting are

the names of the configured libraries to be monitored for growth and changes and the

scheduled duration of the maintenance activity. This last item, the schedule, is col-

lected in lieu of collecting estimates of the scope of the maintenance activity and the

effort that will be involved (as is done via the PEF during development).

The maintenance start date recorded should be the date on which the maintainers

assume responsibility for the system, regardless of whether the developers have com-
pleted and delivered all final documentation. The maintenance end date is the date on

which SEL monitoring of the maintenance activity is expected to cease. Generally, this
is either the point at which the system is transferred to an organization from which the

SEL does not collect data, or it is the estimated end of the operational life of the system.

4.2 DATA COLLECTION DURING MAINTENANCE

Once maintenance startup information and start and stop dates for the maintenance

phase have been collected, the SEL collects several types of data on a regular basis

throughout the maintenance phase. Data collected during maintenance and opera-
tions include maintenance effort and growth, which are rate data, and maintenance

changes/errors and messages, which are event data.

The maintenance life cycle, as performed in the GSFC FDD environment and docu-

mented in the Operational Software Modification Procedures (OSMP) (Reference 16),

centers on the concept of a logical change (as defined in Section 3.2.2.4). The cycle
begins with identifying the need for a change, be it an error correction, an enhance-

ment, or an adaptation to changes in the environment, and documenting it on an

Operational Software Modification Report (OSMR) form.

Sometimes changes are initiated by changes to the system requirements or specifica-

tions. The SEL does not collect data on the work performed to update these

documents, but rather collects data on the implementation of approved OSMRs.

Once the OSMR is approved, work on implementing the change begins. This includes

designing, coding, and testing the change. Once the maintainer has completed and

tested the change in his/her local library, there are two additional levels of testing that

are performed at two different levels of configured source code libraries: integration

testing and acceptance testing. Changes that successfully pass acceptance testing are
promoted to the operational library.

The SEL collects data through all of the above levels of maintenance activities. In some

cases, the different levels of testing are performed by different organizations. For

6201

4-2

example,amaintenanceorganizationmightperform the implementation of the change

and integration testing, after which an operations organization takes over for

acceptance testing. If the SEL has not established data collection agreements with one

or the other organization, the data collected will be incomplete. The segments of the

Operational Software Modification (OSM) life cycle for which the SEL does not

receive data should be noted as project messages, so that researchers looking at the

data will understand that there are pieces missing.

4.2.1 Maintenance Rate Data

Maintenance rate data collected by the SEL originate from two sources. One source is

the effort data supplied on WMEFs completed and submitted by maintainers on the

project. The other source of rate data is growth data automatically monitored by the

SEL data collection team. The WMEF and maintenance growth data are discussed in

the following sections.

4.2.1.1 WEEKLY MAINTENANCE EFFORT FORM (WMEF)

During maintenance, effort data are collected on a WMEF (Figure 4-1). This form is

analogous to the PRF and CLPRF (Figures 3-3 and 3-4, respectively) submitted during

development. It categorizes the hours spent by a given maintainer on the project along

two dimensions. The first is the class of maintenance change (or changes) beingworked

on. The second is the breakdown of activities performed in implementing a change or

changes.

The WMEF is submitted weekly by every member of the maintenance team who per-
forms technical work on the maintenance effort. Recall that this does not include work

performed to update requirements or specifications. A WMEF is required from every

team member for each week he/she is assigned to the project, even for weeks in which

no hours are worked on the project (e.g., vacation or temporary assignment to another

project). The "zero-hour" form is the mechanism by which the SEL data collectors en-

sure that the effort data collected for a given week are complete. Project leaders re-
ceive reminder notices for all team members from whom the SEL does not receive a

form in a given week. The SEL keeps a list of maintainers assigned to each monitored

maintenance project and uses it to generate these reminders. The list is distributed to

project leaders to update each month as part of the data collection status report (see

Section 3.2.1.3).

Maintenance activity is often performed sporadically; i.e., there may be periods of

heavy activity alternating with periods in which little or no maintenance is performed.

It is important nonetheless that the zero-hour forms be submitted, because the SEL has

no other mechanism for determining the level of maintenance activity on the projects it

monitors. If, however, there are personnel who perform maintenance activities on the

project infrequently, it is not reasonable for them to receive regular reminder notices.

Thus, it is up to the project leader to decide whether individual maintainers should be

included on the list of maintainers assigned to the project and, for those who are not

6201

4-3

Name:

Project:

WEEKLY MAINTENANCE EFFORT FORM

Date (Friday):

=or L_Dr_an's Use Only

Number; q

I _ate:

Entered nv

Checx_cl _v:

Section A - Total Hours Spent on Maintenance ci.ou,_=ume.spent onallmaintenance
ac_.,itlesfor the projectexcludingwnttng specd_ation modtflca'dons)

Section B - Hours By Class of Maintenance Cr_l ofhours inSet, on S shouldequaltotal hoursin
Set,on A)

Class Definition Hours

Correction Hours spent on all maintenance associated with a system failure.

Enhancement Hours spent on all maintenance associated witll modifying the system due i
to a requirements change. Includes adding, deleting, or modifying system I
features as a result of a requirements change. I

i

Adaptation Hours spent on all rnaintenan(m associated wrih modifying a system to i
adapt to a change in hardware, system software, or environmental
characteristics.

Other Other hours spent on the project (related to maintenance) not covered
above. Includes management, meetings, etc.

Section C - Hours By Maintenance Activity (To_ot._,_ inS.=on Csh_ld _= to=lho,,,s,n
Set, on A)

Activity Activity Definitions Hours

Isolation Hours soent understanding the failure or request for enhancement or
adaptation.

Change Hours spent actually redesigning the system based on an unOerstanding
Design of the necessary change.

Implementation Hours spent changing the system to complete the necessary change.
This includes changing not only the code, but the associated
documentation.

Unit Test/ Hours spent testing the changed or added o0ml:x:ments. Incluc:lesrKxJrs
System Test sl:ent testing the integration of the components.

Acceptance/ Houm spent acceptance testing or loenc_'nark testing the modifiea
Benchmark Test system.

Other Other hours spent on the project (related to maintenance) not covered
above. Includesmanagement, meetings, etc.

o

(3

(D

NOVEMBER 1991

Figure 4-1. Weekly Maintenance Effort Form

6201

4-4

listed, to ensure that they submit WMEFs when they actually do perform maintenance

work on the project.

The SEL also expects that the project leader will help to assure the quality of data sub-

mitted on WMEFs by periodically scanning the forms submitted by team members to

ensure that the hours recorded match those the team member charged to the mainte-

nance cost collector in the organization's timekeeping system and that the classification

of hours is appropriate for the types of activities being performed on the project.

Line-by-Line Instructions

Name: Enter the SEL database name of the maintainer completing the form. Usually,

the database name consists of a first initial followed by a last name. Questions about

database names should be referred to the SEL DBA.

Project: Enter the acronym selected at maintenance start-up that uniquely identifies

the project being monitored. Check with the project leader if unsure of the correct

name.

Date (Friday): Enter the Friday date corresponding to the end of the week for which

data are being reported. Data are to be reported on this form for all work performed on

the project during the preceding Saturday-through-Friday period.

Section A

Total hours spent on maintenance: Enter the total hours actuaUyworked on main-

tenance for the project for the current week. This includes any overtime, whether paid

or unpaid. It does not include paid hours not charged to the project, such as sick time,

holidays, orvacations. Note that this number must equal the sum of the hours recorded
under the maintenance classes in Section B, as well as the sum of the hours recorded

under the maintenance activities in Section C. If partial hours are recorded, enter them
in decimal form to the nearest tenth of an hour. Do not enter fractions. This also

applies to all hours entered in Sections B and C.

Section B

Correction: Enter the number of hours during the current week spent working on

OSMRs to correct system errors. This includes those that originated from errors in the

requirements or specifications.

Enhancement: Enter the number of hours during the current week spent working on

OSMRs to modify the system due to a requirements or specifications change. This

activity includes adding, deleting, or modifying system capabilities. It does not include

correcting errors in the requirements and specifications themselves.

Adaptation: Enter the number of hours during the current week spent working on

OSMRs to adapt the system for a change in hardware, system software, or environ-

6201

4-5

mental characteristics. This includes changes necessitated by an upgrade to the

compiler or operating system, changes to support a new or upgraded I/O device, or

changes needed to port the system to a different hardware platform.

Other: Enter the number of hours during the current week that were not spent working

on a particular OSMR. This category includes such activities as meetings, manage-

ment, and training, provided they are related to the maintenance of the system. Config-

uration management and documentation hours should be recorded here only if they

cannot be associated with specific OSMRs.

Section C

Isolation: Enter the number of hours during the current week spent isolating an error

or understanding a request for enhancement or adaptation. This includes running tests

to isolate the source of an error, analyzing specification modifications, or simply study-

ing system code to become familiar with the areas affected by a change.

Change design: Enter the number of hours during the current week spent redesign-

ing portions of the system based on an understanding of the necessary change. This

includes generating new design (diagrams, prologs, PDL) for implementing system

enhancements. It also includes time spent inspecting and certifying new and modified

design products.

Implementation: Enter the number of hours during the current week spent updating

code and documentation or generating new code and documentation to complete the

necessary change. This activity includes time spent inspecting and certifying new and
modified code.

Unit test/system test: Enter the number of hours during the current week spent test-

ing and integrating the changed or added components and testing them in the context of

the end-to-end system. This activity includes designing and executing tests and writing

test drivers and program stubs. In the maintenance life cycle, this activity covers testing

at both the programmer and integration levels.

Acceptance/benchmark test: Enter the number of hours during the current week

spent acceptance testing or benchmark testing. This activity involves verifying that the

software meets requirements and performs correctly with existing operational soft-

ware. In the maintenance life cycle, this activity covers testing at the acceptance level.

Other: Enter the number of hours during the current week spent on any miscellaneous

activities involving maintenance not categorized in any of the above activities. This

includes management, meetings, training, configuration management, and system

build activities. Note that updating documentation falls under the Implementation

activity.

Helpful Hint

Aswith the PRF in development, there is a tendency on Section C of the WMEF to

record activities by "phases," rather than truly reflecting the type of work being

6201

performed. For example, if a change has been promoted to the acceptance test

level, it is common to see all hours associated with it reported under the

Acceptance/Benchmark Test activity in Section C. If some hours were actually

spent correcting errors reported during acceptance test on trouble reports, howev-

er, those hours should be recorded under the appropriate categories (i.e., Isola-

tion, Change Design, etc.) based on the actual activities performed. The

Acceptance/Benchmark Test activity should be reserved for actually executing and

evaluating tests.

4.2.1.2 GROWTH DATA

The second type of rate data collected during maintenance is growth data. The SEL

collects these data automatically by monitoring the configured source code library or

libraries. In development, libraries are monitored weekly to provide a profile of source

code growth through the life-cycle phases. In maintenance, however, libraries are mon-

itored monthly, since changes are not expected to occur as rapidly in maintenance as

they do in development. In addition, the measures taken in maintenance represent a

profile of maintenance activity more than they do a profile of system growth, since

growth in maintenance is generally a slower, long-term phenomenon characterized by
short-term increases and decreases.

Since the OSMP calls for multiple levels of libraries to be used in maintaining an opera-

tional system, it should be clarified that the operational libraries are those that the SEL

monitors. The maintenance project leader must communicate the names and locations

of these libraries to SEL data collection personnel. The libraries the SEL is monitoring

at any given time are listed on the data collection status report (see Section 3.2.1.3),

which is distributed monthly to project leaders for validation and update.

The SEL uses the SPF to record monthly growth data. This is the same form used in

development, only the computer resources and services effort portions are not used,

and it is completed monthly rather than weekly. (SEL personnel run growth history

tools for maintenance projects on the last Friday of each calendar month.) Refer to Sec-

tion 3.2.1.3 for a complete description of the SPF and a discussion of the growth data

collected on it. The "Helpful Hint" included in that section contains library manage-

ment guidelines that are applicable to both maintenance and development.

4.2.2 Maintenance Event Data

As in development, event data in maintenance are submitted to the SEL sporadically,

when given events in the maintenance life cycle occur, as opposed to" being submitted on

a regular, periodic basis. Two types of event data are collected in maintenance: mainte-

nance changes/errors and messages. Changes data are collected on MCRFs and char-

acterize the OSMRs that are implemented in the operational system. Messages data

may be submitted at any time to capture auxiliary information about the maintenance

effort or the data being collected on it. The MCRF and maintenance messages data are

discussed in the following sections.
a

6201

4-7

4.2.2.1 MAINTENANCE CHANGE REPORT FORM (MCRF)

General Information

For every OSMR implemented by the maintenance team, the SEL receives a corre-

sponding MCRF (Figure 4-2), which provides data that characterize the change. A
copy of the OSMR should be attached to the MCRF when it is submitted.

The MCRF is completed by the maintainer responsible for implementing and testing

the OSM-R. It should be submitted after the change has been tested at the integration

level and promoted to the acceptance test library for acceptance/benchmark testing.

Although the implementing maintainer may not be responsible for integration testing,

he/she should be aware of the progress of the change so that the form may be submitted

when the change is promoted for acceptance level testing.

Line-by-line Instructions

Name: Enter the SEL database name of the maintainer completing the form. Usually,
the database name consists of a first initial followed by a last name. Questions about
database names should be referred to the SEL DBA.

OSMR number:. Enter the tracking number of the OSMR that authorized the change
being characterized on the MCRF.

Project: Enter the acronym selected at maintenance startup that uniquely identifies

the project being monitored. Check with the project leader if unsure of the correct
name.

Date: Enter the date on which the form is completed.

Section A

Functional description of change: Explain what change is being made, why the

change is necessary, and how the change is being made. Provide sufficient detail so that

people other than project staff can understand the change. The description should not

be on the variable name level, but should be sufficiently abstract so that the ftznction of

the changed code can be determined.

What was the type of modification? Check the one option that best classifies the

OSMSR according to the following definitions:

Correction: A change made to correct an error in the system; usually arises

from a system failure reported on some type of trouble report or failure

report form; may originate in requirements, specifications, design, code, or
documentation.

Enhancement: A change made to improve the functionality or performance

of the system; usually originates from a change in requirements or specifica-

tions, but not a requirements or specifications change that simply corrects an
error.

6201

4-8

MAINTENANCE CHANGE REPORT FORM For Uiorarlan'sUse Only
Number:

Name: OSMR Number: Dam:

Ent_reO by:

n-;...r_ruj_,._: Date: . ChecXeoby:

SECTION A: Change Request Information

Functional Description of Change:

What was the type of modilication?

Correction

Enhancement

Adaptation

What caused the change?

Requirements/specifications

Software design

Code

Previous change
Other

SECTION B: Change Implementation Information

Components Added/Changed/Deleted:

Estimate effort spent isolating/determining the change:

Estimate effort to design, implement, and test the change:

1 hrto 1 dayto 1 weekto

< lhr 1 day 1 week 1 month > 1 month

Check all changed objects:

Requiraments/Specitlcations Document

Design Document
Code

System Description
User's Guide

Other

If code changed, characterize the change (check most
applicable):

Initialization

Logictcontroi structure
(e.g., changed flow of control)

Interface (internal)
(module-to-module communication)
interface (external)
(module to external communication)

Data (value or structure)
(e.g., variable or value changed)

Computational
(e.g., change ot math expression)

Other (none of the above apply)

Estimate the number of lines of code (including comments):
added

Enter the number of components:
added changed deleted

Enter the number of the added components that are:
totally new

changed deleted

totally reused reused with
modifications

NOVEMBER 1991

Figure 4-2. Maintenance Change Report Form

6201

4-9

Adaptation: A change made to adapt the system to a change in the environ-

ment; may originate as a requirements change (e.g., a requirement is added

that the system must execute on hardware platform Y as well as on plat-

form X, for which it was originally designed). Such changes include adapting
to a new hardware platform, upgrading to run under a new version of the

compiler or operating system, and supporting new or upgraded hardware
devices.

Cause of change: Check the one option that best indicates where the change origi-

nated, or to what part of the development life cycle represented in the final product the
source of the change can be traced. The options are as follows:

Requirements�specifications: Any change requiring updates to the require-

ments or specifications that is not the direct result of a previous change. Any

of the three types of change may originate in requirements or specifications:

corrections may derive from correcting errors in the requirements; enhance-

ments may derive from additional requirements to add new functionality or

requirements changes to improve performance; and adaptations may derive

from new requirements to run on different hardware or support different
devices.

Software design: Any change requiring updates to the software design that

does not originate in requirements or specifications and is not the result of a

previous change; includes changes to calling sequences, PDL, structure

charts, etc. Any of the three types of change may originate in design: correc-

tions may be made to fix design errors; enhancements to improve perform-

ance (not specifically called out in a requirements or specifications change)

may involve modifications to the design; adaptations to a new version of the

compiler or operating system (usually versions of system software and tools

are not specified in requirements or specifications) may also involve modifi-

cations to the design.

Code: Any change requiring updates to the code that does not originate in

requirements, specifications, or design, and is not the result of a previous

change. Any of the three types of change may originate in code: corrections

may be made to fix coding errors that result from the incorrect implementa-

tion of a correct design; enhancements to improve performance may be made

that involve the way in which a given design is implemented; and adaptations

to changes in the environment may be made that involve only changes at the

code level and leave the design intact.

Previous change: Any change that is the direct result of implementing a pre-
vious OSMR (changes made during development are not considered when

determining if a change falls into this category). Any of the three types of

changes may be the result of a previous change. Changes in this category may

involve changes to requirements, specifications, design, and code, but if their

6201

4-10

causecanbetraceddirectlyto apreviousOSMR, theyshouldbeclassifiedin
this category.

Other: Any change that does not result from a previous change and does not

affect requirements, specifications, design, or code. Changes to improve the

clarity of stand-alone or inline documentation would fall into this category.

Section B

Components added/changed/deleted: Supply three lists (attaching a separate

sheet if necessary) that identify new components that were added to the system (includ-

ing any that were totally reused from another source), existing components that were

modified, and existing components that were deleted from the system in implementing
the OSMR.

Estimate the effort spent isolating/determining the change: Put a check mark in

the box that indicates the approximate effort spent understanding the change (or find-

ing the cause of the error), locating where the change is to be made, and determining

that all effects of the change are accounted for. Note that this effort is to be reported in

staff-days, not calendar days. Note also that this does not include effort spent making

modifications to requirements or specifications, but begins with the effort spent by the

maintainer understanding the system modifications necessitated by such changes.

Estimate the effort to design, implement, and test the change: Put a check mark

in the box that indicates the approximate effort spent implementing the change. This

includes all effort spent by the maintainer modifying design, code, and documentation,

and testing the change at the local level. It also includes as much of the effort spent at

higher levels of testing as is possible to obtain. There are two factors that determine the

testing level at which effort should no longer be included. One is the level at which the

change is delivered to an organization from which the SEL does not collect data. The

other is the level at which multiple changes are being integrated and tested simulta-

neously, such as may happen when several OSMRs are combined to constitute a new

release of the software. In this case, effort associated with testing a particular OSMR

cannot be reasonably distinguished from that associated with other OSMRs in the re-
lease.

Check all changed objects: Put a check mark by all of the objects listed that were

modified as a result of implementing the OSMR. The items listed are standard

development products and require no clarification. The Other item should be checked

if any other documents, software, or procedures directly related to the system were

changed. This includes, among other things, JCL, build procedures, interface control

documents (ICDs), development tools, and test procedures.

6201

4-11

If code changed, characterize the change: Put a check mark by the one classifica-

tion that best describes the majority of the code changes made. The options are as fol-
lows:

Initialization: The largest proportion of the code changes involved adding or

changing code that initializes data structures at the beginning of a run or upon

entry to a subroutine or procedure. This includes modifying DATA state-

ments and BLOCK DATA subprograms.

Logic/controlstructure (e.g., changed flow of control): The largest proportion

of the code changes involved modifying Boolean decision points that control

program flow. This includes correcting or changing condition expressions on

IF and CASE statements and changing loop entry or exit criteria.

Interface (internal) (module-to-module communication): The largest pro-

portion of the code changes involved modifying the way data move through

the system internally. This includes changes in calling sequences (parameter

and argument lists), the specification and use of COMMON blocks, and the
use of state data.

Interface (external) (module to external communication): The largest pro-

portion of the code changes involved modifying the way the system communi-

cates with the external world. This includes, among other things, changes to
the format or access method used with external files, the contents or format

of reports, the data presented on display screens, and the mechanism by

which the user supplies input to the system.

Data (value or structure) (e.g., variable or value changed): The largest pro-

portion of the code changes involved modifying the specification of and ac-

cess to data structures. This includes, among other things, changes to

variables, variable names, array indexes, dynamic data structures, and the

use of pointers.

Computational (e.g., change of math expression): The largest proportion of

the code changes involved adding or modifying code that computes mathe-

matical expressions to evaluate or assign the value of a variable.

Other (none of the above apply): Since virtually all code changes fall into one

of the preceding categories (even deletions involve removing code that falls

into the categories listed), this option should be checked only if the propor-

tions of code changes falling into two or more of the categories are close

enough that a single category with the largest proportion is not discernible.

6201

4-12

Estimate the number of lines of code (including comments):

NOTE: The lines of code counted for the following three fields are SLOC, which is

defined as a count of carriage returns, card images, or file records. In count-

ing SLOC, each line of the system stored in a source code file is counted only

one time. Thus, for example, the addition of an INCLUDE statement to a

component would be counted as one additional source line of code, rather

than counting the size of the file being included. (See also the discussion of

line counting in hint 3 of PCSF instructions--Section 3.3.1).

Added: Enter the number of newly created lines of code added to the system.

This includes all lines in new components that are added to the system, new

segments of code that are added to existing system components, and net

increases in segments of code that are modified in existing components.

• Changed: Enter the number of existing lines of code that were modified.

Deleted: Enter the number of lines of code deleted from the system. This

includes all lines in components that are deleted from the system, entire seg-

ments of code that are deleted from existing system components, and net de-

creases in segments of code that are modified in existing components.

Enter the number of components:

NOTE: The component counts entered in the following three fields must match the

number of components in the lists provided in the Components Added/

Changed/Deleted field.

Added: Enter the number of components thatwere added to the system. This

is not limited to newly developed components, since components may have

been added by reusing them from other sources. It is also not a net increase in

components from before the change to after it.

Changed: Enter the number of existing system components in which source

code was added, modified, or deleted.

Deleted." Enter the number of components that were deleted from the system.

This may include components that were linked into the system from another

source but are no longer linked in as a result of the change (see hint 4). It is

not a net decrease in components from before the change to after it.

Enter the number of added components that are:

NOTE: The sum of the component counts entered in the following three fields must

equal the total number of components added to the system as recorded in the

preceding set of fields.

Totally new: Enter the number of added components that were designed and

implemented from scratch.

6201

4-13

.

o

.

Totally reused: Enter the number of added components that were reused

without modification from other sources. This includes all totally reused

components that are copied into the project's operational library, as well as

certain classes of reused components that are linked in from external reuse

libraries (see hint 4).

Reused with modifications: Enter the number of added components that were

reused from other sources but were modified during the implementation of
the change.

Helpful Hints

Estimating the effort spent implementing a change can be imprecise,

especially if there are several levels of testing covered by the estimate. The

maintainer may not have information about how much time is spent on a

particular change by testers at the integration level or at higher testing levels.

One suggestion is to have a key point of contact responsible for coordinating

a given level of testing. This individual would be in the best position to esti-

mate the amount of effort spent testing a given change at that particular level.

The responsible maintainer should consult these key points of contact for

each of the testing levels included and combine the estimates when filling out
this part of the form.

Characterizing the predominant type of code changes made is really more of

a judgment call by the maintainer than a precise measurement. However, the

maintainer is strongly urged to think through the types of modifications per-

formed (including thinking about what type of code was deleted) and select

a predominant type of change when completing this part of the form, rather

than resorting to the Other category to indicate that no single type of change
was predominant.

Questions often arise about how to determine the number of lines added,

changed, and deleted. If, for example, a maintainer is modifying a five-line

segment of code and finds it easier to delete the five lines and retype them

with the modifications, are those counted as five lines deleted and five added,

or simply as five lines changed? The answer is not clear-cut. If the change

involved simply changing a variable name in each of the five lines, those five

lines would definitely be considered changed lines. If, however, the five lines

deleted are replaced by five entirely different lines that implement the same

function via an entirely different algorithm, they should be counted as five

lines deleted and frye lines added. Perhaps the best advice for supplying these

counts for modified components (it is obvious for added and deleted compo-

nents) is to use a comparison tool to produce difference listings between the

old versions of the changed components and the new versions. Such tools are

available in the FDF mainframe environment, the STL VAX environment,

and on PCs, and many will produce summary counts of added, changed, and

6201

4-14

deletedlines. It is recommendedthat suchatool beselectedandusedconsis-
tently for computing theseline counts.

. Another point of clarification concerns defining the "boundaries" of the sys-

tem with respect to reused software linked in from other sources for the pur-

pose of counting added, changed, and deleted lines and components. As

discussed in hint 4 of the PEF instructions (Section 3.1.2), software that is

linked in from institutionally maintained tools (such as a graphics display tool

or vendor-supplied, language-specific library of mathematics routines), is

not considered within the system boundaries for purposes of measuring the

effects of a change. If, however, the reused software is linked in from a sepa-

rately maintained application or a generic library of application-specific soft-

ware (e.g., RSL, MTASS, or MSASS), then it is considered inside the system

boundaries for purposes of measuring the effects of a change.

4.2.2.2 PROJECT MESSAGES

The second type of event data collected during maintenance is project messages. These

are submittedwhenever a maintainer or SEL data collector wants to provide additional

information to annotate the data being collected. Messages are submitted on a PMF,
described in Section 3.2.2.5.

Typical message information that should be submitted during maintenance includes the

testing level through which effort data are collected, the testing level through which the

effort spent on a given OSMR is being tracked, the organizational responsibilities for

maintenance of the system, periods during which data collected should be considered

incomplete for one reason or another, any deviations from the OSMP being adopted by

the project that would be important to users of the data, and any additional information

that describes the nature of the data, their accuracy, or how they should be interpreted.

Although there is no formal closeout process defined for the end of maintenance data

monitoring, SEL data collection personnel meet with the maintenance project leader

to discuss the data collected and identify any final areas where clarification or annota-

tion is necessary. The results of this final, informal meeting are documented in the

database via a PMF completed by a SEL data collector.

6201

4-15

APPENDIX---SEL FORMS

The SEL forms appear on the following pages.

A-1

Name:

Project:

CHANGE REPORT FORM

Approved by:

Date:

Sec_on A- identifica'don

Describe the ctlange: (What, w_y, how)

Effect: What components are c_=xjecl?

Pndlx I Name Vemlon

!

, !

_,ttactl list ifmore space is needed)

Location of developer's source files

Need for cl'mnge_lnecl on:
Change completed (incorporated into system):

Effort: What acldition= components
ere eomrrune¢l c_errr_ning
wttat cttange wes nes¢_?

Effortin pet_n _lme to iso4atethe cttange (or error):
Effortin person time to Implement the P.,ttan_(or cccmc_on):

Chec*h_e d_ J-woMm
Aria_ (/fso, comp_Ce
qu_Clomonmve_Jes_e)

[]

Section B- All Changes

Type of Change (Check one)
[] Errorcoeeceon [] OpkC=_n ol=_o=_
[] Ranned enl'mncmn_tt a_cunmy

[] Vnm=nen'-t_ =_requnm=n,- [] _ = _wor=_
cmn_ ctlml

[] v,'.orov=n.n=otm.r_y, 1-]o_r (Da==_ =Jow!
maln_rmMIly, or __

[-] Im_',mmenl of umm'mr_m=

[] r,.,,Jt_.v,:_..=onotd.d=,gcoo.

y . Effectsof Ct_
[] [] W==_ec_mg*or_ =oomandon_one

component? (Muir mi_ Effoct InSac=on A)

[] [] 01d you _ et any o'RIr comlx)mmt? (Must
mm=h Effort In S.caon A)

[] I"'ImdWuhe,t _0b. ,,,_motpan,mqm_p,,,=,.d
mmlolly m"Irnpacely (e.g., COMMON bkx:¢_) to or
fe0m _ ctmngad conlxmma=?

Source ot Error
(Check one)

Section C- For Error Corrections Only
Crassof Error

(C:tleck most applicaDle)"

[] Requlmqrmn'_

[]euncmoru_._.emc.m)..

Oco_,
0 P_,v_=c_mng.

[] Initli_11on

(_ communcmlon)

D=m (valueor_

(e.g., en,orm m,.m mmmmaon)

,'etwom,,,que_ m ct_:==,_
one higl'w on tim I_.

Charactertstlcs
(Chec_ Y or N for aJl)

Y N

[]o

r-lo

oo

_i==_on en_ (_, son_ing wu k_t out)

C_mmLt_i_n en_ (L_, somee_r_ ln¢cm_ wu

Error w_ _ by tmm_p#on (¢_tcal)

Numi_e:
Date:

En_,r_d I_:
Checked by:

N@VEMBER199t

6201

A-2

CHANGE REPORT FORM
Ada Project AddilJonal Information

1. Check wl_ich Ada feature(s) was involved in this change (Check all that apply)

[] Data typing_ [] Program structure and packaging

[] _rams [] T___r_

[] F_xc_kx_s [] Sy=em-deper_ntteatures

[] Generics [] Other, please specn'y
(e.g., I/O, Ada statements)

2. For an error in,_oMng Ada oomporamm:

a. Does tim compiler documentation or the language

reference manual explain the femum clearly?

b. Which of the io_lowing is most true? (Check one)

[] U_ features separately but not interaction

[] Understoo¢l leetums, but did not apply con'ectly

[] Did not understand features fully

[] Confused feetum with fe_um in another _anguage

c. Which of the toilowing resources provided the introtmation

needed to correct the error? (Ct_ck all that ap_ly)

[] C_ass notes [] Own memory

[] Adarefemncemanual [] Someone not on team

[] Own prelect team meml_er [] Other

d. Which tools, if any, aided in the detection or correction of this error? (Check aU that apply)

(Y/N)

[] Compiler [] Source Code Analyzer

[] Symbolic de_gget [] P&CA (Performance and Coverage Analyzer)

[] Larcjuage-ser_tive editor [] DEC test manager

[] CMS [] Other, specify

3. _ any other infomrtation ai3out the interaction of Ada anal thLschange

tl_ you feet mig_ aid in evaluating the change and using Aria

(.o

NOVEMBER1991

6201

A-3

COMPONENT CHANGE FORM

Name:

Project: Date:

This form is to be used when components in the project contJ'olledsource library are deleted or
renamed.

Old Component R - Rename New Component
(Must exist in the database) D - Delete

Prefix Name Prefix I Name

_D

NOVEMBER 1991

6201

A-4

COMPONENT ORIGINATION FORM

Identification

Name:

Project:

Subsystem Prefix:

Component Name:

Date:

Configuration Management Information

Date entered into controlled library (supplied by configuration manager):

Library or directory containing developers source file:

Member name:

Relative Difficulty of Developing Component

Please indicate your judgment by circling one of the numbers below.

Easy Medium Hard
1 2 3 4 5

Origin

If the component was modified or derived from a different project, please indicate the

approximate amount of change and from where it was acquired; if it was coded new (from

detailed design) indicate NEW.. •

NEW'

Extensively modified (more than 25% of Numbs-:
statements changed) Oa-:

Slightty modified En=_ by:

Old (unchanged_ c_c._ by:

If not new, what project or library is it from?

Component or member name:

ForLibrarian'sUseOrdy

Type of Component (Check one only)

INCLUDE file (e.g., COMMON)
Control language (e.g., JCL, DCL, CLIST)

ALC (assembler code)
FORTRAN source
Pascal source

C source

NAMELIST or parameter list
Display identification (e.g., GESS, FDAF)

Menu definition or help
Reference data files

BLOCK DATA file

Ada subprogram specification

Ada subprogram body
Ada package specification
Ada package body

Ada task body
Ada generic instantiatJon

Ada generic specification
Ada generic body
Other

Purpose of Executable Component

For executable code, please identify the major purpose or purposes of this component.

(Check all that apply).

I/O processing
Algorithmic/computational
Data transfer

LogicJdecision
i

NOVEMBER 1991

Control module

Interface to operating system
Process abstraction

Data abstraction

6201

A-5

DEVELOPMENT STATUS FORM

Name;

Project:
Oate:

Please complete the sect=on(s) {nat is appropriate for the current status of the prolect.

Design Status

Planned total nu_r of components to be des_gnecl

(New, modifie¢l, and reused)

J
NumDer of components designed I
(Prolog and PDL have oeen completed) I

Code Status
I

Planned total numOer of components to be coded
(New, modified, and reused)

Num0er of components completed

• (Added to controlled library)

Testing Status System Test Acceptance Test

Total numOer of separate tests planned

NumOer ot tests executed at least one time

Numoer ot tests 0assed

Discrepancy Tracking Status (from beginning of system testing)

Total numOer ot oiscreoancles reOorled ',
I

Total numOer of dlscreoanczes resolved r

I Specification Modification Status (from beginning of rec_uirements analysis)
i

Total numoer ot specr,_icataon modifications recelve_l I

Total numOer of sDecn'ication modifications con'_teted (implemented)

Requirements Questions Status (from beginnfng of requirements analysis)

Total numoer ot questions sul_mrtted to analysts

Total numoer ot questions answered by anaWsts i

Check here if there

are no changes

For Librarian's Use Oniy

Number:

Date:

Entered by:

Checked by:

NOVEMBER 1991

6201

A-6

MAINTENANCE CHANGE REPORT FORM _um,,-.-__, ',==-,an',_On=v

Name: OSMR'Number: I Date:
| . _ _ "_ J Enleced by:

/Prol ect: _ _ Date: __ I ch_xe_y._----

SECTION A: Change Request Information

Functional Description of Change:

What was the type of modification?

Correction

Enhancement

Adaptation

What causecl the change?

Requirements/specifications

Software design

Code

Previous change
Other

SECTION B: Change Implementation Information

Components Added/Changed/Deletod:

Estimate effort spent isolating/determining the change:

Estimate effort to design, implement, and test the change:

Check all changed objects:

Requirements'Specifications Document

Design Document

Code

System Description
User's Guide

Other

lhrto 1 dayto 1 weekto
< lhr 1 day 1 week 1 month • 1 month

If code changed, characterize the ct_ange (check most
applicable):

• _ Initialization

LogicJcomrol structure
(e.g., changed flow of control)

Interface (internal)
(module-to-module communication)

__ Interface (external)

(module to external communication)
__ Data (value or structure)

(e.g., variable or value changed)

Computational
(e.g., change of math expression)

Other (none of the above apply)

Estimate the number of lines of code (including comments): __
added

Enter the number of components:

added changed deleted

Enter the number of the added components that are:
totally new

change_l deleted

totally reused reused with

modifications 1_
NOVEMBER 1991

6201

A.-7

Name:

Personnel Resources Form

Project: Date(Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTION B: Hours By Activity (Total of hours in Section B should eclual total hours in Section A)

ACtMty Ac_i_ Definitions

Predesign Understandingtheconceptsof thesystem. Anyworkprior totheactualdesign (such
as requirementsanalysis).

CreateOesign Oevelopmentotthe system,subsystem,orcomponentsdesign. Includesdevelopment
of POL designdiagrams,etc.

Read/ReviewDesign Hoursspentreadingor re,dewingdesign. Includesdesignmeetings,iormal and informal
reviews,or watkthrougns.

Writ_ Code Actuallycoding systemcomponents, includesbothdeskandterminal codedevelopment.

Reacl/Revi_wCode Codereadingfor anypurposeotherthan isolationof errors.

Test CodeUnits Tes'dngindividualcomponentsof the system. Includeswritingtestdrivers.

Oebugging Hoursspent findinga known errorinthe systemanddevelopinga solution, includesgen-
erationand executionof testsassociatedwithfindingthe error.

IntegraUonTest Writingandexecutingtests thatintegratesystemcomponents,includingsystemtests.

AcceptanceTest Running/suppor_ngacceptancetes_ng.

Other Otherhoursspenton the projectnotcoveredabove. Includesmanagement,meetings,
traininghours,notebooks,systemdescaptions,usersguides, etc.

Hours

SECTION C: Effort On Specific Activities (Need not add to A)
(Some hours may be counted in more than one area; view each activity separately)

Rework: Estimateof totalhoursspentthatwerecausedby unplannedchangesorerrors.Includes
effortcausedby unplanned_anges to_eolications, erroneousorchangeddesign,errorsor
unplannedchangestocoae,changesto documents.(Thisincludesallhoursspentdebugging.)

Enhancing�Refining�Optimizing:Estimateof totalhoursspentimprovingtheefficiencyor clarityof design,or
code,ordocumentation.Theseare not causedt_yreduiredchangesorerrorsin thesystem.

Oocumenting: Hourssoenton anydocumentationof thesystem. Includesdevelopmentof designdocuments,
prologs,in-linecommentanf,testplans,systemaescnptions,users guides,or anyothersystem
documentation.

Reuse:Hoursspentin aneffortto reusecomponentsof thesystem. Includeseffortin lookingat other
system(s)design,code,ordocumenta'Jon.Counttotalhoursinsearching,applying,andtes_ng.

C2

_or blxiu'_n's Use O_y

Number:

r'_te:

1.0

3
NOVEMBER 1991

6201

A-8

Name:

Project:

Personnel Resources Form
(CLEANROOM VERSION)

Oate (Friday):

SECTION A: Total Hours Spent on Project for the Week:

SECTIONB: HoursBy Activity_Totalof hoursin Section13shouldequaltotalhoursinSectionA)

Activity AcltvityOefin_ons

Predesign Understanding the concepts of the system. Anywon(priorto the actual design (such
as requirements analysis).

Pretest Oevel_ng a test plan and building thetestenvironment. Inauaes generaung test cases,
generating JCL. compiling components, building libraries, and ciefining tnDutsand
probabilities.

Create Design Developmentof the system,subsystem, or components design. Jnctudesbox structure
decomposition, stepw_serefinement, develcoment of PDL, des=gndiagrams, etc.

Ver_fy,,Rev_.ewOesign Inc_des design meetings, formal and informal reviews, and walkthrougns.

Write Code

Read/Review Code

Actuallycoding system components. Includesboth desk and terminalcode development.
f

Code reading for anypurposeother than isoiatJonof errors. In_udes venfying and
revie_ng code for correctness.

Independent Test Execu_ngand evaluating tests of systemcomoonents.

I
Response to SFR Isolating a tester-reported orol3temanddeveloo_nga solution. [nctudeswritingand

reviewing design or code to isolate and correa a tester-reportedoroblem.

Acceptance Test Running/suppo_ngacceptance testing.

Other Other hoursspenton the proiectnotcoveredabove. Inctudes management, meeungs,
training hours,notebooks,system descriptions, users guides, e[c.

SECTIONC: EffortOn S0ecificActivities

Hours

Metho(lok_y Understar_ling/Oiscuss_on:Estimatethe total_urs sper_ learning, discussing,rewew_ngor
attempung to understand cleanroom-related meti'_x_and tecnniques. :n_es all timesoent in training.

Fo,r L_anan's Use Only

NumOer:

0a=:

NOVEMBER 1991

6201

A-9

PROJECT COMPLETION STATISTICS FORM

Date:

Phase Dates (Saturdays)

Sta_0atePhase

Requirements Oefin_ion

Oesign

Implementation

System Test

Acceptance Test

Cleanup

Maintenance

ProjectEnd

Staff Resource Statistics

Technical and

Management Hours

Services Hours

Computer Resource Statistics

Computer CPU hours No. of runs

Project Size Statistics

General Parameters

Number of subsystems

Number 0'_comDoner'its

Source L, nes of Code

Total

New

Number of changes Slightly Moclified

Pages of documentation _=xtenswely Modified

Old

Comments

Executai01e Mcdules
ii

Total

New

Slightly Modified

Extensively Modified

Old

Executable Statements Statements

Total Total I

New

S{ightly ModifieO

Extensively Modified

OkJ

New I

Slightly Modified !

I Extensively Modified JOld 1

Note: AJlof_e valueson thisformaretobe actualvaluesat

_hecornpletJonoftheprolect.The valuesenteredby

hand bySEL personnel reflect the r_ta collected by
_e SEL during _e course of _e project. Upda{e
bheseaccorOing:o prolecl recores and supply values
f:r aJl blank fields.

For L_.hr_'_n's USe Only

Number:.

Oate:

Enlerea r_y:

C,".ec'_._acy:

NOVEMSER 1991

A-10

6201

PROJECT ESTIMATES FORM

Name:

Project:

Phase Dates (Saturdays)

Phase Start Data

RequirementsDefinition

Das jn

Implementation

System Test

Acceptance Test

Cteanup

ProjectEnd

Date:

Staff Resource Estimates

ProgrammerHours

Management Hours

ServicesHours

Project Size Estimates

Numberof subsystems

Numberof components

Total

New

Modified

Old

Source Lines of Code

Note: All of tttevaluesonthisformare to be
estimatesof projectedvaluesat compie'don
of the prelect. Thisform shouldbe
subndttedwith updatedestimatesevery 6 to
8weeks during thecourse of the pro_=¢_.

I

Number:

Date:

Entar_ by:

Ctlec_KI by.

For Ubrartan's Use Only

(D

NOVEMBER 1991

6201

A-11

Name:

Project:

Messages:

PROJECT MESSAGES FORM

Date:

¢D

NOVEMBER 1991

6201

A-12

Name:

Project:

PROJECT STARTUP FORM

Date:

PLEASE PROVIDE ALL AVAILABLE INFORMATION

Project Full Name:

Project Type:

Contacts:

Language:

Computer System:

Account:

Task Numcer:

Forms To Be Collected: (Circle forms that apply)

PEF PRF CLPRF DSF SPF SIF COF CCF

Gener&J Nctes:

CRF SEF PCSF WMEF MCRF

Personnel Names (indicate with if not in clatal3ase):

°

_g

NOVEMBER t991

6201

A-13

SERVICES/PRODUCTS FORM

Project:

Date (Friday):.

COMPUTER RESOURCES

Computer CPU Hours No. of Runs

GROWTH HISTORY

Components

Changes

Lines of Code

SERVICES EFFORT

Service

Tech Pubs

Secretary

Proj Mgmt

Other

Hours

For Librarian's Use Only

Number:

Date:

Entered by:

Checked by:

NOVEMBER 1991

6201

A-14

R
_v

CD

SUBJECTIVE EVALUATION FORM

Name:

Project:
Oate:

rndicate resDonse oy circling the corresponOmg numeric ranking.

L 'PROBLEM CHARACTERISTICS

1. Assess the intrinsic clifficul W or como_ex_ty of the proOlem that was aclOrassea by the software oevelopment.

1 2 3 4 5

Easy Average Difficult

2. How tight were sct_eduie constraints on proje_ 9

t 2 3 4 5

Loose Average "Tight

3. How staOle were requirements over oevelooment oenoa?

1 2 3 4 5

Loose Average High

4. Assess the overall quality of the reau=rements soecffica00n documents, including their cian W, accuracy,

consistency, and completeness.

1 2 3 4 5

Low Average High

5. How extensive were documentation re_Jirements?

I 2 3 4 S

Low Average High

6. How rigorous were formal review requirements?

1 2 3 4. 5

Low Average Higt_

I1. PERSONNEL CHARACTERISTICS: TECHNICAL STAFF

7. Assess overall quality and aOility at cevetopment team.

2 3 4 5

Low Average Higll

8. How wou_d you characterize the deve_coment team's exoenence anO familiarity with the aoplication area at

the project ?

1 2 3 4 5

Low Average High

9. Assess the develo0ment team's exoenence and famdiar= W w_th the dev_ooment environment (haraware

and sul_pon software).

1 2 3 4 5

LOW Average High

10. How stadia was the composition or the develo_oment team over the duration of the project?

1 2 3 4 5

Loose Average High

FOR LIBRARIAN'S USE ONLY

Number: EntereO by:

0ate: ChecxeO by:

NOVEMBER 1991

6201

A-15

SUBJECTIVE EVALUATION FORM

III. PERSONNEL CHARACTERISTICS: TECHNICAL MANAGEMENT

11. Assess the overaJI performance ot proiect management.
1 2 3 4 5

Low Average _igh

12, Assess prolect management's exoerience and farr_liarity wRh the a_op_lcat_on,
I 2 3 4 5

Low Average High

13. How sta_e was I_oject management during the projeGt?

1 2 3 4 5

Low Average High

t 4. What cleqree ot dis_p_ined proiect _anning was usecl?

f 2 3 4 5

Low Average High

15. To what degree were oro_ect 01arts Iollowecl?

t 2 3 4 5

Low Average _ign

IV. PROCESS CHARACTERISTICS

16. To what extent Old the development team use moCtern programming pcact¢ces (POL, top-down

development, structured programming, and code reaping)?

1 2 3 4 5

Low Average Hign

17. To what extent did the development team use well-defined or disc=l_lined procedures to record

s;_eaticat_on moa_ticattons, requirements questions and answers, anO interlace agreements?
1 2 3 4 5

Low Average Hign

18. To wnat extent old the develo0ment team use a well-defined or aiscloImed reou=rements analys_s

methodology ?

1 2 3 4 5

Low Average High

19. To what extent (:lid the develo_)ment team use a well-defined or ciisc=plined desagn methodology?
1 2 3 4 5

Low Average High

20. To what extent did the devetopment loam use a well-defined or Oisclolined lestmg methodology?

] 2 3 4 5

Low Average High

IV. PROCESS CHARACTERISTICS

21. What software tools were used I_ the development team? Check all that apoly Trom the list that follows

and identify any other tools that were used but are not listeO.

22. To

[] Coml_ler

[] Linker

_J E_tor

[] Graonlc Oisolay 0udder

_] Requzrements language processor

[_ Structured analys=s support _0ol

[] POL processor

[] JsPF
_-J SAP

[] CAT

[] PANVALET

[] Test coverage toot

[] Interlace checker (RXVP80, etc.)

[] La.nguage-sensitive editor

SymColic ¢eOugger

[] Configura0on Management Tool (CMS, etc.)

[] Others (identify by name and run,ion)

what extent c_id the development team prepare and follow lest plans?

2 3 _ 5

Low Average High

6201

A-16

SUBJECTIVE EVALUA'I3ON FORM

IV. PROCESS CHARACTERISTICS (CON'I'D)

23. To what extent did the development team use well-defined and disciplined quality assurance _'ocedures

(reviews, inspec_lons, and walkthrougns)?
2 3 4 5

Low Average High

24. To what extent o=d development team use well-defined or ciscipfined configuration management

procedures ?
I 2 3 4 5

Low Average High

V. ENVIRONMENT CHARACTERISTICS

25. How would you charactenze the development team's degree of acc_ss to the development system?
1 2 3 4 5

Low Average High

26. What was t_e ratio of programmers to terminals?
1 2 3 4 5

8:1 4:1 2:1 1:1 1:2

27. To what degree was the develnpment team constrained by the size of main memory or direct-access

storage aval;able Gn the development system?
1 2 3 4 5

Low Average High

28. Assess tl_e system response time: were the turnaround t_mes experienced by the team satisfactory =n

light of the size and nature of the jobs?
1 2 3 4 5

Poor Average Very Good

29. How stable was tha hardware and system support software (including language processors) dunng the

_roiect?
I 2 3 4 5

Low Average High

30. Assess the effect=vaness of the software tools.

I 2 3 4 5

Low Average High

VI. PRODUCT CHARACTERISTICS

31. To what degree Odes the delivered software provide the capabilities specified in the requirements?

2 3 4 5

Low Average High

32. Assess the quaint de'the delivered software product.

1 2 3 4 5

Low Average High

33. Assess the quality of the design that is wesent in the software proOucl.
1 2 3 4 5

Low Average High

34. Assess the quam4ty and oompleteness of the delivered system documentation.
I 2 3 4 5

Low Average High

35. To what degree were software pcoOucts delivered on time ?
1 2 3 4 5

Low Average High

36. Assess smoothness or relative ease of acceptance testing.
1 2 3 4 5

Low Average High

6201

A-17

Name:

Project:

SUBSYSTEM INFORMATION FORM

Date:

Add New Subsystems

Subsystem Subsystem Subsystem
Prefix Name Function

Change Existing Subs'/stems
Action

Old Subsystem Prefix (R - Rename, New Subsystem Prefix
(Must exist in the database) D - Delete) (Must not exist in the database)

This form is to be completed by the time of the Preliminary Design Review IPOR). An update
must be submitted each time a new subsystem is defined thereafter. This form is also to be
used when a subsystem is renamed or deleted.

Subsystem Prefix: A prefix of 2 to 5 characters used to identify the subsystem when naming
components

Subsystem Name: A descriptive name of up to 40 characters
Subsystem Function: Enter me most appropriate function code from the list of functions below:

For Li_an_u_'s L.LseOnly

USERINT:
DPDC:

REALTIME:
MATHCOMP:
GRAPH:
CPEXEC:

SYSSERV:

User Interface

Data Processing_ata Conversion
Real-time Control

Mathematica!/Comoutational

Graphics and Special Device Support
Control Processing/Executive
System Services

NOVEM8ER 1991

6201

A-18

_ LJDra/'lart's Use C)nty

Number:

Oa[e:

Enmrea I_y:

Checxea i_y:

WEEKLY MAINTENANCE EFFORT FORM

Name:

Project: Date (Friday):

Section A-Total Hours Spent on Maintenance (Incluaestirnespentonallrnaintenance
acUvitlee for the project exc.t.lcling wntlng spec_cation modifications)

Section B - Hours By Class of Maintenance (TotalofhoursinSectionB srtouldequaltotalhoumin
Sectk)nA)

Class Definition! Hours

Con'e:0on flours spent on all maintenance associated with a system failure.

Enhancement I-k_Jrsspent on all maintenance associated with modifying the system due
to a requirements change. Includes adding, deleting, or modifying system
features as a result of a requirements change.

Adaptation Hours spent on all maintenance associated with modifying a system to
adapt to a change in hardware, system software, or environmental
characteristics.

Other Other hours spent on the project (related to maintenance) not covered
above. Includes management, meetings, etc.

Section C-Hours By Maintenance Activity (TotalofhouminSectlonCsttould equaitotalhoumin
Set,on A)

ActtvityDefinitions: Hours

isolation Hours spent understanding the failure or request for enhancement or
adaptation.

Change I-Ioum spent actually redesigning the system based on an understancling
Design of the necessary change.

Implementation Hours si:ent changing the system to complete the necessary change.
This includes changing not only the code, but the associated
documentation.

Unit Test/ Houm spent testing the changed or added components. Includes hours
System Test spent testing the integration of the comt_ccmts.

Acce_ance/ Hc_rs spent acceptance testing or 10enctmlark testing the modified
Benctmlark Test system.

'Other Other hours spent on the project (related to maintenance) not covered
above. Includes management, meetings, etc.

NOVEMBER 19gi

c_

.T.

o

8201

A-19

AGSS

ATR

CCF

CDR

CLPRF

CM

CMS

COF

CPU

CRF

DBA

DEC

DSF

FDAF

FDD

FDF

GESS

GSFC

ICD

ISPF

JCL

MCRF

MSASS

MTASS

NASA

OSM

OSMP

GLOSSARY

Attitude Ground Support System

assistant technical representative

Component Change Form

Critical Design Review

Cleanroom Personnel Resources Form

configuration management

Code Management System

Component Origination Form

central processing unit

Change Report Form

Database Administrator

Digital Equipment Corporation

Development Status Form

Flight Dynamics Application Framework

Flight Dynamics Division

Flight Dynamics Facility

Graphics Executive Support System

Goddard Space Flight Center

interface control document

Interactive System Productivity Facility

job control language

Maintenance Change Report Form

Multimission Spin-Axis Stabilized Spacecraft

Multimission Three-Axis Stabilized Spacecraft

National Aeronautics and Space Administration

Operational Software Modification

Operational Software Modification Procedures

G-1

OSMR

PC

PCSF

PDL

PDR

PEF

PMF

PR

PRF

PSF

QA

RDBMS

SAP

SDE

SEF

SEL

SFR

SIF

SLOC

SPF

STL

STR

WMEF

Operational Software Modification Report

personal computer

Project Completion Statistics Form

program design language

Preliminary Design Review

Project Estimates Form

Project Messages Form

problem report

Personnel Resources Form

Project Startup Form

quality assurance

Relational Database Management System

FORTRAN Static Source Code Analyzer Program

Software Development Environment

Subjective Evaluation Form

Software Engineering Laboratory

software failure report

Subsystem Information Form

source lines of code

Services/Products Form

Systems Technology Laboratory

software trouble report

Weekly Maintenance Effort Form

6201

G-2

REFERENCES

1. Software Engineering Laboratory, SEL-81-101, Guide to Data Collection.

V. Church et al., August 1982

2. --, SEL-84-101, Manager's Handbook for Software Development (Revision 1),
L. Landis et al., November 1990

3. --,SEL-89-101,Software Engineering Laboratory (SEL) Database Organization

and User's Guide (Revision 1), M. So et al., February 1990

4. --, SEL-90-OO1,Database Access Managerforthe Software Engineering Labora-
tory (DAMSEL) User's Guide, M. Buhler et ai., March 1990

5. Goddard Space Flight Center, FDD/552-90/008, Database Access Manager for

the Software Engineering Laboratory (DAMSEL) System Description (Revision 1),

M. So et al., prepared by Computer Sciences Corporation, April 1990

6. Software Engineering Laboratory, SEL-91-004, Cleanroom Process Model,

S. Green, November 1991

7. --, SEL-81-205, Recommended Approach to Software Development, E E.

McGarry et al., April 1983

8. Goddard Space Flight Center, FDD/552-90/053, Multimission Three-Axis

Stabilized Spacecraft (MTASS) Flight Dynamics Support System (FDSS) Atn'tude

Determination System (ADS) User's Guide, R. Coon et al., prepared by Computer

Sciences Corporation, September 1990

9. --, 552-F'DD-91/019, Multimission Spin-Axis Stabilized Spacecraft (MSASS)

Flight Dynamics Support System (FDSS) User's Guide, C. Crognale et al.,

prepared by Computer Sciences Corporation, October 1991 (Draft)

10. - -, 552-FDD-91/O48,.Reusable Software Library (RSL) User's Reference, Revi-

sion 1, M. Woolsey et al., prepared by Computer Sciences Corporation, July 1991

11. Software Engineering Laboratory, SEL-86-OO3,FlightDynamics System Software

Development Environment (FDS/SDE) Tutorial, J. Buell et al., July 1986

12. Computer Sciences Corporation, CSC/SD-75/6057UD1, Graphic Executive

Support System (GESS) User's Guide, Update 1, D. Green, September 1989

13. Goddard Space Flight Center, 552-FDD-89/011UD1, Flight Dynamics Applica-

tion Framework (FDAF) User's Guide, Revision 1, Update 2, D. Green, prepared

by Computer Sciences Corporation, May 1991

14. International Business Machines Corporation, Interactive System Productivity

Facility (ISPF) and ISPF/Program Development Facility (ISPF/PDF) Version 3

Release 2 General Information, GC34-4250, March 1990

R-1

15.

16.

SoftwareEngineering Laboratory, SEL-78-302,FORTRAN Static Source Code

Analyzer Program (SAP) User's Guide (Revision 3), W. Decker and W. Taylor,
July 1986

Goddard Space Flight Center, 553-FDD-91/023, Flight Dynamics Facili_ (FDF),

Operational Software Modification Procedures (OSMP) Revision 1, R. Jenkins

et al., prepared by Computer Sciences Corporation, July 1991 (Draft)

6201

R-2

STANDARD BIBLIOGRAPHY OF SEL LITERATURE

The technical papers, memorandums, and documents listed in this bibliography are or-

ganized into two groups. The first group is composed of documents issued by the Soft-

ware Engineering Laboratory (SEL) during its research and development activities.

The second group includes materials that were published elsewhere but pertain to SEL
activities.

SEL-ORIGINATED DOCUMENTS

SEL-76-001, Proceedings From the First Summer Software Engineering Workshop,

August 1976

SEL-77-002, Proceedings From the Second Summer Software Engineering Workshop,

September 1977

SEL-77-004, A Demonstration of AXES for NAVPAK, M. Hamilton and

S. Zeldin, September 1977

SEL-77-005, GSFC NA VPAKDesign Specifications Languages Study, P. A. Scheffer and

C. E. Velez, October 1977

SEL-78-005, Proceedings From the Third Summer Software Engineering Workshop,

September 1978

SEL-78-006, GSFC Software Engineering Research Requirements Analysis Study,

P. A. Scheffer and C. E. Velez, November 1978

SEL-78-007, Applicability of the Rayleigh Curve to the SEL Environment, T. E. Mapp,
December 1978

SEL-78-302, FORTRAN Static Source Code "Analyzer Program (SAP) User's Guide

(Revision 3), W. J. Decker, W. A. Taylor, et al., July 1986

SEL-79-002, The Software Engineering Laboratory:

K. Freburger and V. R. Basili, May 1979

Relationship Equations,

SEL-79-003, Common Software Module Repository (CSMR) System Description and

User's Guide, C. E. Goorevich, A. L. Green, and S. R. Waligora, August 1979

SEL-79-004, Evaluation of the Caine, Farber;, and Gordon Program Design Language

(PDL) in the Goddard Space Flight Center (GSFC) Code 580 Software Design Environ-

ment, C. E. Goorevich, A. L. Green, and W. J. Decker, September 1979

SEL-79-005, Proceedings From the Fourth Summer Software Engineering Workshop,
November 1979

1OOOO229

0328/1300

BI-1

SEL-80-002,Multi-Level Expression Design Language-Requirement Level (MEDL-R)
System Evaluation, W. J. Decker and C. E. Goorevich, May 1980

SEL-80-003, Multimission Modular Spacecraft Ground Support Software System (MMS/

GSSS) State-of-the-Art Computer Systems�Compatibility Study, T. Welden,

M. McClellan, and P. Liebertz, May 1980

SEL-80-005, A Study of the Musa Reliability Model, A. M. Miller, November 1980

SEL-80-006, Proceedings From the Fifth Annual Software Engineering Workshop,
November 1980

SEL-80-007, An Appraisal of Selected Cost�Resource Estimation Models for Software
Systems, J. E Cook and E E. McGarry, December 1980

SEL-80-008, Tutorial on Models and Metrics for Software Management and Engineering,
V. R. Basili, 1980

SEL-81-008, Cost and Reliability Estimation Models (CAREM) User's Guide, J. E Cook

and E. Edwards, February 1981

SEL-81-009, Software Engineering Laboratory Programmer Workbench Phase I Evalua-

t/on, W. J. Decker and E E. McGarry, March 1981

SEL-81-011, Evaluating Software Development by Analysis of Change Data,
D. M. Weiss, November 1981

SEL-81-012, The Rayleigh Curve as a Model for Effort Distribution Over the Life of
Medium Scale Software Systems, G. O. Picasso, December 1981

SEL- 81-013, Proceedings of the Sixth Annual Software Engineering Workshop, Dece robe r
1981

SEL-81-014, Automated Collection of Software Engineering Data in the Software Engi-

neeringLaboratory (SEL), A. L. Green, W. J. Decker, and E E. McGarry, September
1981

SEL-81-101, Guide toData Collection, V. E. Church, D. N. Card, E E. McGarry, et al.,
August 1982

SEL-81-104, The Software Engineering Laborato_, D.N. Card, E E. McGarry,
G. Page, et al., February 1982

SEL-81-107, Software Engineering Laboratory (SE L) Compendium of Tools (Revision 1),

W. J. Decker, W. A. Taylor, E. J. Smith, et al., February 1982

SEL- 81-110, Evaluation of an Independent Verification and Validation (IV& V) Methodol-

ogy for Flight Dynamics, G. Page, E E. McGarry, and D. N. Card, June 1985

BI-2

SEL-81-205, Recommended Approach to Software Development, E E. McGarry,

G. Page, S. Eslinger, et al., April 1983

SEL-82-001, Evaluation of Management Measures of Software Development, G. Page,
D. N. Card, and F. E. McGarry, September 1982, vols. 1 and 2

SEL-82-004, Collected Software Engineering Papers: Volume 1, July 1982

SEL-82-007, Proceedings of the Seventh Annual Software Engineering Workshop,
December 1982

SEL-82-008, Evaluating Software Development by Analysis of Changes: The Data From

the Software Engineering Laboratory, V. R. Basili and D. M. Weiss, December 1982

SEL-82-102, FORTRAN Static Source Code Analyzer Program (SAP) System Description

(Revision 1), W. A. Taylor and W. J. Decker, April 1985

SEL-82-105, Glossary of Software Engineering Laboratory Terms, T. A. Babst,

M. G. Rohleder, and E E. McGarry, October 1983

SEL-82-1006, Annotated Bibliography of Software Engineering Laboratory Literature,

L. Morusiewicz and J. Valett, November 1991

SEL-83-001, An Approach to Software Cost Estimation, E E. McGarry, G. Page,

D. N. Card, et al., February 1984

SEL-83-002, Measures and Metrics for Software Development, D.N. Card,

E E. McGarry, G. Page, et al., March 1984

SEL-83-003, Collected Software Engineering Papers: Volume II, November 1983

SEL-83-006, Monitoring Software Development Through Dynamic Variables,

C. W. Doerflinger, November 1983

SEL-83-007, Proceedings of the Eighth Annual Software Engineering Workshop,
November 1983

SEL-83-106, Monitoring Software Development Through Dynamic Variables (Revi-

sion 1), C. W. Doerflinger, November 1989

SEL-84-003, Investigation of Specification Measures for the Software Engineering Labora-

tory (SEL), W. W. Agresti, V. E. Church, and E E. McGarry, December 1984

SEL-84-004, Proceedings of the Ninth Annual Software Engineering Workshop,
November 1984

SEL-84-101, Manager's Handbook for Software Development (Revision 1), L. Landis,

E E. McGarry, S. Waligora, et al., November 1990

SEL-85-001, A Comparison of Software Verification Techniques, D.N. Card,

R. W. Selby, Jr., E E. McGarry, et al., April 1985

BI-3

SEL-85-002,Ada Training Evaluation and Recommendations From the Gamma Ray

Observatory Ada Development Team, R. Murphy and M. Stark, October 1985

SEL-85-003, Collected Software Engineering Papers: Volume III, November 1985

SEL-85-004, Evaluations of Software Technologies: Testing, CLEANROOM, and

Metrics, R. W. Selby, Jr., and V. R. Basili, May 1985

SEL-85-005, Software Verification and Testing, D. N. Card, E. Edwards, E McGarry,
and C. Antle, December 1985

SEL-85-006, Proceedings of the Tenth Annual Software Engineering Workshop,
December 1985

SEL-86-001, Programmer's Handbook for Flight Dynamics Software Development,
R. Wood and E. Edwards, March 1986

SEL-86-002, General Object-Oriented Software Development, E. Seidewitz and

M. Stark, August 1986

SEL-86-003, Flight Dynamics System Software Development Environment (FDS/SDE)

Tutorial, J. Buell and P. Myers, July 1986

SEL-86-004, Collected Software Engineering Papers: Volume _ November 1986

SEL-86-005, Measuring Software Design, D. N. Card et al., November 1986

SEL-86-006, Proceedings of the Eleventh Annual Software Engineering Workshop,
December 1986

SEL-87-001, Product Assurance Policies and Procedures for Flight Dynamics Software

Development, S. Perry et al., March 1987

SEL-87-OO2,Ada ® Style Guide (Version 1.1), E. Seidewitz et al., May 1987

SEL-87-003, Guidelines for Applying the Composite Specification Model (CSM),

W. W. Agresti, June 1987

SEL-87-004, Assessing the Ada® Design Process and Its Implications: A Case Study,

S. Godfrey, C. Brophy, et al., July 1987

SEL-87-009, Collected Software Engineering Papers: Volume V, November 1987

SEL-87-010, Proceedings of the Twelfth Annual Software Engineering Workshop,
December 1987

SEL-88-001, System Testing of a Production Ada Project: The GRODY Study, J. Seigle,
L. Esker, and Y. Shi, November 1988

SEL-88-002, Collected Software Engineering Papers: Volume 1t7, November 1988

BI-4

_0000229

SEL-88-003, Evolution of Ada Technology in the Flight Dynamics Area: Design Phase

Analysis, IC Quimby and L. Esker, December 1988

SEL-88-004, Proceedings of the Thirteenth Annual Software Engineering Workshop,
November 1988

SEL-88-005, Proceedings of the First NASA Ada User's Symposium, December 1988

SEL-89-002, Implementation of a Production Ada Project: The GRODY Study,

S. Godfrey and C. Brophy, September 1989

SEL-89-003, Software Management Environment (SME) Concepts and Architecture,

W. Decker and J. Valett, August 1989

SEL-89-004, Evolution of Ada Technology in the Flight Dynamics Area: Implementation/

Testing Phase Analysis, K. Quimby, L. Esker, L. Smith, M. Stark, and E McGarry,
November 1989

SEL-89-005, Lessons Learned in the Transition to Ada From FORTRAN at NASA/

Goddard, C. Brophy, November 1989

SEL-89-006, Collected Software Engineering Papers: Volume VII, November 1989

SEL-89-007, Proceedings of the Fourteenth Annual Software Engineering Workshop,
November 1989

SEL-89-008, Proceedings of the Second NASA Ada Users' Symposium, November 1989

SEL-89-101, Software Engineering Laboratory (SEL) Database Organization and User's

Guide (Revision 1), M. So, G. Heller, S. Steinberg, IC Purnphrey, and D. Spiegel,

February 1990

SEL-90-001, Database Access Manager for the Software Engineering Laboratory

(DAMSEL) User's Guide, M. Buhler, K. Pumphrey, and D. Spiegel, March 1990

SEL-90-002, The Cleanroom Case Study in the Software Engineering Laboratory: Project

Description and Early Analysis, S. Green et al., March 1990

SEL-90-003,A Study of the Portability of anAda System in the Software Engineering Labo-

ratory (SEL), L. O. Jun and S. R. Valett, June 1990

SEL-90-004, Gamma Ray Observatory Dynamics Simulator in Ada (GRODY) Experi-

ment Summary, T. McDermott and M. Stark, September 1990

SEL-90-005, Collected Software Engineering Papers: Volume 1/711, November 1990

SEL-90-006, Proceedings of the Fifteenth Annual Software Engineering Workshop,
November 1990

SEL-91-001, Software Engineering Laboratory (SEL) Relationships, Models, and Man-

agement Rules, W. Decker, R. Hendrick, and J. Valett, February 1991

BI-5

lm
002_13oo

SEL-91-003, Software Engineering Laboratory (SEL) Ada Performance Study Report,
E. W. Booth and M. E. Stark, July 1991

SEL-91-004, Software Engineering Laboratory (SEL) Cleanroom Process Model,
S. Green, November 1991

SEL-91-005, Collected Software Engineering Papers: Volume IX, November 1991

SEL-91-006, Proceedings of the Sixteenth Annual Software Engineering Workshop,
December 1991

SEL-91-102, Software Engineering Laboratory (SEL) Data and Information Policy (Revi-

sion 1), E McGarry, August 1991

SEI.,- 924301, Software Management Environment (SME) Installation Guide, D. Kistler,

January 1992

SEL-92-002, Data Collection Procedures for the Software Engineering Laboratory (SEL)
Database, G. Heller, March 1992

SEL-RELATED LITERATURE

4Agresti, W. W., V. E. Church, D. N. Card, and P. L. Lo, "Designing With Ada for Sat-

ellite Simulation: A Case Study," Proceedings of the First International Symposium on

Ada for the NASA Space Station, June 1986

2Agresti, W. W., E E. McGarry, D. N. Card, et al., "Measuring Software Technology,"

Program Transformation and Programming Environments. New York: Springer-Verlag,
1984

1Bailey, J. W., and V. R. Basili, '_A Meta-Model for Software Development Resource

Expenditures," Proceedings of the Fifth International Conference on Software Engineer-
ing. New York: IEEE Computer Society Press, 1981

8Bailey, J. W., and V. R. Basili, "Software Reclamation: Improving Post-Development

Reusability," Proceedings of the Eighth Annual National Conference on Ada Technology,
March 1990

1Basili, V. R., "Models and Metrics for Software Management and Engineering,"

ASME Advances in Computer Technology, January 1980, vol. 1

Basili, V. R., Tutorial on Models and Metrics for Software Management and Engineering.

New York: IEEE Computer Society Press, 1980 (also designated SEL-80-008)

3Basili, V. R., "Quantitative Evaluation of Software Methodology," Proceedings of the

First Pan-Pacific Computer Conference, September 1985

7Basili, V. R., Maintenance = Reuse-Oriented Software Development, University of

Maryland, Technical Report TR-2244, May 1989

BI-6

7Basili,V.R.,Sof-twareDevelopment: A Paradigm for the Future, University of Maryland,

Technical Report TR-2263, June 1989

8Basili, V. R., "Viewing Maintenance of Reuse-Oriented Software Development,"

IEEE Software, January 1990

1Basili, V. R., and J. Beane, "Can the Parr Curve Help With Manpower Distribution

and Resource Estimation Problems?," Journal of Systems and Software, February 1981,

vol. 2, no. 1

9Basili, V. R., and G. Caldiera, A Reference Architecture for the Component Factory,

University of Maryland, Technical Report TR-2607, March 1991

lBasili, V. R., and IC Freburger, "Programming Measurement and Estimation in the

Software Engineering Laboratory," Journal of Systems and Software, February 1981,

voi. 2, no. 1

3Basili, V. R., and N. M. Panlilio-Yap, "Finding Relationships Between Effort and

Other Variables in the SEL," Proceedings of the International Computer Software and

Applications Conference, October 1985

4Basili, V. R., and D. Patnaik,.4 Study on Fault Prediction and Reliability Assessment m

the SEL Environment, University of Maryland, Technical Report TR- 1699, August 1986

2Basili, V. R., and B. T. Perricone, "Software Errors and Complexity:. An Empirical

Investigation," Communications oftheACM, January 1984, vol. 27, no. 1

1Basili, V. R., andT. Phillips, "Evaluating and Comparing Software Metrics in the Soft-

ware Engineering Laboratory," Proceedings of the .4CM SIGMETRICS Symposium/

Workshop: Quality Metrics, March 1981

3Basili, V. R., and C. L. Ramsey, "ARROWSMITt-I-P----A Prototype Expert System for

Software Engineering Management," Proceedings of the IEEE/MITRE Expert Systems

in Government Symposmm, October 1985

Basili, V. R., and J. Ramsey, Structural Coverage of Functional Testing, University of

Maryland, Technical Report TR-1442, September 1984

Basili, V. R., and R. Reiter, "Evaluating Automatable Measures for Software Develop-

ment," Proceedings of the Workshop on Quantitative Software Models for Reliability,

Complexity, and Cost. New York: IEEE Computer Society Press, 1979

5Basili, V. R., and H. D. Rombach, "Tailoring the Software process to Project Goals

and Environments," Proceedings of the 9th International Conference on Software Engi-

neering, March 1987

5Basili, V. R., and H. D. Rombach, "T A M E: Tailoring an Ada Measurement Envi-

ronment," Proceedings of the Joint .4da Conference, March 1987

oa_ll_oa

BI-7

5Basili,V. R., andH. D. Rombach,"T A M E: IntegratingMeasurementInto Software
Environments," University of Maryland, Technical Report TR-1764, June 1987

6Basili, V. R., and H. D. Rombach, "The TAME Project: Towards Improvement-

Oriented Software Environments," IEEE Transactions on Software Engineering, June

1988

7Basili, V. R., and H. D. Rombach, TowardsA Comprehensive Framework for Reuse: A

Reuse-Enabling Software Evolution Environment, University of Maryland, Technical

Report TR-2158, December 1988

8Basili, V. R., and H. D. Rombach, Towards A Comprehensive Framework for Reuse:

Model-Based Reuse Characterization Schemes, University of Maryland, Technical

Report TR-2446, April 1990

9Basili, V. R., and H. D. Rombach, Support for Comprehensive Reuse, University of

Maryland, Technical Report TR-2606, February 1991

3Basili, V. R., and R. W Selby, Jr., "Calculation and Use of an Environment's Charac-

teristic Software Metric Set," Proceedings of the Eighth International Conference on Soft-

ware Engineering. New York: IEEE Computer Society Press, 1985

Basili, V. R., and R. W. Selby, Jr., Comparing the Effectiveness of Software Testing Strate-

gies, University of Maryland, Technical Report TR-1501, May 1985

3Basili, V. R., and R. W. Selby, Jr., "Four Applications of a Software Data Collection

and Analysis Methodology," Proceedings of the NA TO Advanced Study Institute, August
1985

5Basili, V. R., and R. Selby, "Comparing the Effectiveness of Software Testing Strate-

gies," IEEE Transactions on Software Engineering, December 1987

9Basili, V. R., and R. W. Selby, "Paradigms for Experimentation and Empirical Studies

in Software Engineering," Reliability Engineering and System Safety, January 1991

4Basili, V.R., R. W. Selby, Jr., and D. H. Hutchens, "Experimentation in Software

Engineering," IEEE Transactions on Software Engineering, July 1986

2Basili, V. R., R. W. Selby, and T Phillips, "Metric Analysis and Data Validation Across

FORTRAN Projects," IEEE Transactions on Software Engineering, November 1983

2Basili, V. R., and D. M. Weiss,A Methodology for Collecting Valid Software Engineering

Data, University of Maryland, Technical Report TR-1235, December 1982

3Basili, V. R., and D. M. Weiss, "A Methodology for Collecting Valid Software Engi-

neering Data," IEEE Transactions on Software Engineering, November 1984

1Basili, V. R., and M. V. Zelkowitz, "The Software Engineering Laboratory: Objec-

tives," Proceedings of the Fifteenth Annual Conference on Computer PersonneI Research,

August 1977

BI-8

Basili, V.R., and M. V.Zelkowitz, "DesigningaSoftwareMeasurementExperiment,"
Proceedings of the Software Life Cycle Management Workshop, September 1977

lBasili, V. R., and M. V. Zelkowitz, "Operation of the Software Engineering Labora-

tory," Proceedings of the Second Software Life Cycle Management Workshop, August
1978

1Basili, V. R., and M. V. Zelkowitz, "Measuring Software Development Characteristics

in the Local Environment," Computers and Structures, August 1978, vol. 10

Basili, V. R., and M. V. Zelkowitz, "Analyzing Medium Scale Software Development,"

Proceedings of the Third International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1978

9Booth, E. W., and M. E. Stark, "Designing Cortfigurable Software: COMPASS Imple-

mentation Concepts," Proceedings of Tri-Ada 1991, October 1991

9Briand, L. C., V. R. Basili, and W. M. Thomas,A Pattern RecognitionApproach for Soft-

ware Engineering Data Analysis, University of Maryland, Technical Report TR-2672,

May 1991

5Brophy, C. E., W. W. Agresti, and V. R. Basili, "Lessons Learned in Use of Ada-

Oriented Design Methods," Proceedings of the Joint Ada Conference, March 1987

6Brophy, C. E., S. Godfrey, W. W. Agresti, and V. R. Basili, "Lessons Learned in the

Implementation Phase of a Large Ada Project," Proceedings of the Washington Ada

Technical Conference, March 1988

2Card, D. N., "Early Estimation of Resource Expenditures and Program Size,"

Computer Sciences Corporation, Technical Memorandum, June 1982

2Card, D. N., "Comparison of Regression Modeling Techniques for Resource Estima-

tion," Computer Sciences Corporation, Technical Memorandum, November 1982

3Card, D.N., '_ Software Technology Evaluation Program," Annais do XI/III

Congresso Nacional de Informatica, October 1985

5Card, D. N., and W. W. Agresti, "Resolving the Software Science Anomaly," The Jour-

nal of Systems and Software, 1987

6Card, D. N., and W. W. Agresti, "Measuring Software Design Complexity," The Jour-

nal of Systems and Software, June 1988

4Card, D. N., V. E. Church, and W. W. Agresti, '_kn Empirical Study of SoftwareDesign

Practices," IEEE Transactions on Software Engineering, February 1986

Card, D. N., V. E. Church, W. W. Agresti, and Q. L. Jordan, 'gt Software Engineering

View of Flight Dynamics Analysis System," Parts I and II, Computer Sciences Corpora-

tion, Technical Memorandum, February 1984

BI-9

10000_9

0_t/la00

Card, D. N., Q. L. Jordan, and V. E. Church, "Characteristics of FORTRAN Modules,"

Computer Sciences Corporation, Technical Memorandum, June 1984

5Card, D.N., E E. McGarry, and G.T. Page, "Evaluating Software Engineering

Technologies," IEEE Transactions on Software Engineering, July 1987

3Card, D. N., G. T. Page, and E E. McGarry, "Criteria for Software Modularization,"

Proceedings of the Eighth International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

1Chen, E., and M. V. Zelkowitz, "Use of Cluster Analysis To Evaluate Software Engi-

neering Methodologies," Proceedings of the Fifth International Conference on Software

Engineering. New York: IEEE Computer Society Press, 1981

'*Church, V.E., D. N. Card, W.W. Agresti, and Q. L. Jordan, "An Approach for

Assessing Software Prototypes," ACM Software Engineering Notes, July 1986

2Doerflinger, C. W., and V. R. Basili, "Monitoring Software Development Through

Dynamic Variables," Proceedings of the Seventh International Computer Software and

Applications Conference. New York: IEEE Computer Society Press, 1983

Doubleday, D., ASAP: An Ada Static Source Code Analyzer Program, University of

Maryland, Technical Report TR-1895, August 1987 (NOTE: 100 pages long)

6Godf:rey, S., and C. Brophy, "Experiences in the Implementation of a Large Ada

Project," Proceedings of the 1988 Washington Ada Symposium, June 1988

Hamilton, M., and S. Zeldin, A Demonstration of AXES for NAVPAK, Higher Order

Software, Inc., TR-9, September 1977 (also designated SEL-77-005)

5Jeffery, D. R., and V. Basili, Characterizing Resource Data: A Model for Logical

Association of Software Data, University of Maryland, Technical Report TR-1848, May
1987

6Jeffery, D. R., and V. R. Basili, "Validating the TAME Resource Data Model," Pro-

ceeding of the Tenth International Conference on Software Engineering, April 1988

5Mark, L., and H. D. Rombach, A Meta Information Base for Software Engineering,

University of Maryland, Technical Report TR-1765, July 1987

6Mark, L., and H. D. Rombach, "Generating Customized Software Engineering

Information Bases From Software Process and Product Specifications," Proceedings of

the 22nd Annual Hawaii International Conference on System Sciences, January 1989

5McGarry, E E., and W. W. Agresti, "Measuring Ada for Software Development in the

Software Engineering Laboratory (SEL)," Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, January 1988

• 7McGarry, E, L. Esker, and K. Quimby, "Evolution of Ada Technology in a Production

Software Environment," Proceedings of the Sixth Washington Ada Symposium

(WADAS), June 1989

BI-10

10o0(_m

3McGarry, E E., J. Valett, and D. Hall, "Measuring the Impact of Computer Resource

Quality on the Software Development Process and Product," Proceedings of the

Hawaiian International Conference on System Sciences, January 1985

National Aeronautics and Space Administration (NASA), NASA Software Research

Technology Workshop (Proceedings), March 1980

3page, G., E E. McGarry, and D. N. Card, "A Practical Experience With Independent

Verification and Validation," Proceedings of the Eighth International Computer Software

and Applications Conference, November 1984

5Ramsey, C. L., and V. R. Basili, An Evaluation of Expert Systems for Software Engi-

neering Management, University of Maryland, Technical Report TR-1708, September
1986

3Ramsey, J., and V. R. Basili, '_naiyzing the Test Process Using Structural Coverage,"

Proceedings of the Eighth International Conference on Software Engineering. New York:

IEEE Computer Society Press, 1985

5Rombach, H. D., "A Controlled Experiment on the Impact of Software Structure on

Maintainability," IEEE Transactions on Software Engineering, March 1987

8Rombach, H. D., "Design Measurement: Some Lessons Learned," IEEE Software,
March 1990

9Rombach, H. D., "Software Reuse: A Key to the Maintenance Problem," Butterworth

Journal of Information and Software Technology, January/February 1991

6Rombach, H. D., and V. R. Basili, "Quantitative Assessment of Maintenance: An

Industrial Case Study," Proceedings From the Conference on Software Maintenance,

September 1987

6Rombach, H. D., and L. Mark, "Software Process and Product Specifications: A Basis

for Generating Customized SE Information Bases," Proceedings of the 22nd Annual

Hawaii International Conference on System Sciences, January 1989

7Rombach, H. D., and B. T. Ulery, Establishing a Measurement Based Maintenance

Improvement Program: Lessons Learned in the SEL, University of Maryland, Technical

Report TR-2252, May 1989

6Seidewitz, E., "Object-Oriented Programming in Smalltalk and Ada," Proceedings

of the 1987 Conference on Object-Oriented Programming Systems, Languages, and

Applications, October 1987

5Seidewitz, E., "General Object-Oriented Software Development: Background and

Experience," Proceedings of the 21st Hawaii International Conference on System

Sciences, January 1988

0am/130o

BI-11

6Seidewitz,E., "General Object-Oriented SoftwareDevelopmentwith Ada: A Life
CycleApproach," Proceedings of the CASE Technology Conference, April 1988

9Seidewitz, E., "Object-Oriented Programming Through Type Extension in Ada 9X,"

Ada Letters, March/April 1991

4Seidewitz, E., and M. Stark, "Towards a General Object-Oriented Software Develop-

ment Methodology," Proceedings of the First International Symposium on Ada for the

NASA Space Station, June 1986

9Seidewitz, E., and M. Stark, "An Object-Oriented Approach to Parameterized Soft-

ware in Ada," Proceedings of the Eighth Washington Ada Symposium, June 1991

8Stark, M., "On Desig'ning Parametrized Systems Using Ada," Proceedings of the

Seventh Washington Ada Symposium, June 1990

7Stark, M. E. and E. W. Booth, "Using Ada to Maximize Verbatim Software Reuse,"

Proceedings of TRI-Ada I989, October 1989

5Stark, M., and E. Seidewitz, "Towards a General Object-Oriented Ada Lifecycle,"

Proceedings of the Joint Ada Conference, March 1987

8Straub, P. A., and M. V. Zelkowitz, "PUC: A Functional Specification Language for

Ada," Proceedings of the Tenth International Conference of the Chilean Computer Science

Society, July 1990

7Sunazuka, T., and V. R. Basili, Integrating Automated Support for a Software Manage-

ment Cycle Into the TAME System, University of Maryland, Technical Report TR-2289,

July 1989

Turner, C., and G. Caron, A Comparison of RADC and NASA/SEL Software Develop-

ment Data, Data and Analysis Center for Software, Special Publication, May 1981

Tamer, C., G. Caron, and G. Brement, NASA/SEL Data Compendium, Data and

Analysis Center for Software, Special Publication, April 1981

5Valett, J. D., and E E. McGarry, '_A Summary of Software Measurement Experiences

in the Software Engineering Laboratory," Proceedings of the 21st Annual Hawaii

International Conference on System Sciences, January 1988

3Weiss, D. M., and V. R. Basili, "Evaluating Software Development by Analysis of

Changes: Some Data From the Software Engineering Laboratory," IEEE Transactions

on Software Engineering, February 1985

5Wu, L., V. R. Basili, and IC Reed, '_ Structure Coverage Tool for Ada Software Sys-

tems," Proceedings of the Joint Ada Conference, March 1987

1Zelkowitz, M.V., "Resource Estimation for Medium-Scale Software Projects," Pro-

ceedings of the Twelfth Conference on the Interface of Statisn'cs and Computer Science.

New York: IEEE Computer Society Press, 1979

BI-12

IOG00221

0_/1300

2Zelkowitz, M.V., "Data Collection and Evaluation for Experimental Computer

Science Research," Empirical Foundations for Computer and Information Science (Pro-

ceedings), November 1982

6Zelkowitz, M. V., "The Effectiveness of Software Prototyping: A Case Study," Pro-

ceedings of the 26th Annual Technical Symposium of the Washington, D. C., Chapter of the
ACM, June 1987

6Zelkowitz, M. V., "Resource Utilization During Software Development," Journal of

Systems and Software, 1988

8Zelkowitz, M. V., "Evolution Towards Specifications Environment: Experiences With

Syntax Editors," Information and Software Technology, April 1990

Zelkowitz, M. V., and V. R. Basili, "Operational Aspects of a Software Measurement

Facility," Proceedings of the Software Life Cycle Management Workshop, September 1977

1OOOO329

BI-13

NOTES:

1This article also appears

Volume I, July 1982.

2This article also appears

Volume H, November 1983.

m SEL-82-004, Collected Software Engmeenng

in SEL-83-003, Collected Software Engmeenng

3This article also appears m SEL-85-003, Collected Software Engmeermg

Volume 111, November 1985.

_lais article also appears m SEL-86-004, Collected Software Engmeenng

Volume IV,, November 1986.

SEL-87-009, Collected Software Engmeenng

SEL-88-002, Collected Software Engmeenng

5This article also appears m

Volume V, November 1987.

6This article also appears m

Volume 1,7, November 1988.

7This article also appears in SEL-89-006, Collected Software Engmeenng

Volume 1,71, November 1989.

8This article also appears m SEL-90-005, Collected Software Engmeenng

Volume VIII, November 1990.

9This article also appears m SEL-91-005, Collected Software Engmeenng

Volume IX, November 1991.

Papers:

Papers:

Papers:

Papers:

Papers:

Papers:

Papers:

Papers:

Papers:

11

BI-14

m

Form Approved
REPORT DOCUMENTATION PAGE OMaNoOZO,_OlS8

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gethetlng and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden eslirnate or any other aspect of this

collection of information including suggestions for reducing th_s burden, to Washington Headquarters Serv ces, Directorate fcr Information Operations and Reports 1215 Jefferson

Davis Highway, Suite 1204, Arlington. VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington. DC 20503,

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 1992 CR 189295

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

DATA COLLECTION PROCEDURES FOR THE SOFTWARE ENGI-

NEERING LABORATORY (SEL) DATABASE

SEL91 0026. AUTHOR(S)

NASA, UNIV. OF MD, COMPUTER SCIENCES CORP.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS (ES)

SAME AS #6

9.SPONSORING/ MONITORINGADGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Goddard Space Flight Center, Greenbelt, MD 20771

8. PEFORMING ORGANIZATION
REPORT NUMBER

CR189295

10. SPONSORING/MONITORING
ADGENCY REPORT NUMBER

CR189295

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABIUTY STATMENT

SINGLE COPIES CAN BE OBTAINED FROM CODE 552/GSFC
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document is a guidebook to collecting software engineering data on software development and mainte-

nance efforts, as practiced in the Software Engineering Laboratory (SEL). It supersedes the document entitled

Data Collection Procedures for the Rehosted SEL Database, number SEL 87 008 in the SEL series, which

was published in October 1987. It presents an overview of SEL data collection and the types of data the SEL

collects. It then presents procedures to be followed on software development and maintenance projects in the

Flight Dynamics Division (FDD) of Goddard Space Flight Center (GSFC) for collecting data in support of

SEL software engineering research activities. These procedures include detailed instructions for the comple-
tion and submission of SEL data collection forms.

14. SUBJECT TERMS

Development Life Cycle-Startup Form/Estimates Form; Personnel Resources and

Cleanroom Resources; Event Data; Project Completion; Data Collection-Maintenance

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

:. _00

16. PRICE CODE

20. UMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39.18

298-102

